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Preface

Quantum Mechanics (henceforth QM) is without a doubt the most important and the most difficult branch
of physics. Our entire current understanding of the material universe is based upon it.

There are many useful introductory texts available today each with its own particular flavor and approach.
The approach taken in this volume is to present to the beginning student an extensive and rich selection of prob-
lems and solutions that cover all the main areas given in an introductory course in QM. Special emphasis was
placed on presenting the basic concepts and results. Part of the task of assimilating introductory QM involves
mastery of the formal (mathematical) methods. Such mastery is necessary to be able to continue with the more
advanced topics. Effort was placed in presenting problems that demonstrate the application of QM to the solu-
tion of applied problems. We have also found it useful to include a chapter on numerical methods. The computer
is already firmly established as an important tool of the practicing physicist.

We wish to thank the following individuals for their contribution and assistance to the production of this
volume: Dr, Uri Onn, Zahir Millad, M.Sc., Moran Furman, M.Sc., and Arya Bart, M.Sc.

It is our hope that this volume will help the novice to QM to overcome the initial hurdles to mastering this
fascinating and important discipline.

YoAv PELEG
REUVEN PNINI
ELYAHU ZAARUR
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Chapter 1

Introduction

1.1 THE PARTICLE NATURE OF ELECTROMAGNETIC RADIATION

Isaac Newton considered light to be a beam of particles. During the nineteenth century, some experiments
concerning interference and diffraction of light demonstrated light’s wavelike nature. Later, optics was inte-
grated into electromagnetic theory and it was proved that light is a kind of electromagnetic radiation. However,
the phenomenon of black body radiation, which was studied toward the end of the nineteenth century, could not
be explained within the framework of electromagnetic theory. In 1900 Max Planck arrived at a formula explain-
ing black body radiation, and later proved that it can be derived by assuming the quantization of electromagnetic

vadiation
A ERSEER T,

In 1905, generalizing Planck’s hypothesis, Einstein proposed a return to the particle theory of light. He
claimed that zid)eam of light of frequency v consists of photons, each possessing energy Av, where
h = 6.62x 10 ~ Joules x second (Planck’s constant). Einstein showed how the introduction of the photon
could explain the unexplained characteristics of the photoelectric effect. About 20 years later, the photon was
actually shown to exist as a distinct entity (the Compton effect; see Problem 1.3),

The photoelectric effect was discovered by Heinrich Hertz in 1887. It is one of several processes by which
electrons can be removed from a metal surface. A schematic drawing of the apparatus for studying the photo-
electric effect is given in Fig, 1-1.

Fig. 1-1

The critical potential V, such that eV, = E_ . (the maximum energy of the electrons emitted from the
anode) is called the stopping potential. The experimental resuits of the photoelectric effect are summarized in
Fig. 1-2.

(@) When light shines on a metal surface, the current flows almost instantaneously, even for a very weak
light intensity.
(b) For fixed frequency and retarding potential, the photocurrent is directly proportional to the light intensity.
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Current Current

~1079 Time Light intensity

{a) )

Current eVy Different
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N\ 7 —

Vo Retarding Frequency
potential of light

© (d)
Fig. 1.2

{¢) For constant frequency and light intensity, the photocurrent decreases with the increase of the retarding
potential V, and finally reaches zero whenV = V..

(d) For any given surface, the stopping potential V, depends on the frequency of the light but is independent
of the light intensity. For each metal there is a threshold frequency v, that must be exceeded for
photoemission to occur; no electrons are emitted from the metal unless v > v, no matter how great the
light intensity is.

The experimental correlation between the stopping potential V, and the frequency of light can be represented by
eV, = hv —hv, (1.1)

where h is the same for all metals (Planck’s constant).

i.2 THE DUALITY OF LIGHT

The double-slit experiment (Problem 1.4) shows that it is not possible to explain the experimental results
if only one of the two characteristics of light—wave or particle—is considered. Light behaves simultaneously
like a wave and a flux of particles;, the wave enables us to calculate the probability of the manifestation of a
particle. The dynamic parameters of the particles (the energy £ and the photon momentum p) are linked to the

wave parameters (the frequency v and the wave vector k) by the relations
E=hv =hoe 12
p = Ak (1.2)

where 2 = h/2x. These are the Planck—Einstein relations.

1.3 THE DUALITY OF MATTER

Contemporaneously with the discovery of the photon, a fundamental phenomenon of atomic physics was
observed. It was discovered that an atom emits or absorbs only light with well-determined frequencies. This
fact can be explained by assuming that the energy of an atom can take on only certain discrete values. The exist-
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ence of such discrete energy levels was demonstrated by the Franck—Hertz experiment. Niels Bohr interpreted
this in 1913 in terms of electron orbits and proposed the following model for the hydrogen atom.

The electrons move in orbits restricted by the requirement that the angular momentum be an integral mul-
tiple of 4/2=. For a circular orbit of radius #, the electron velocity v is given by

nh
mvr = 35— n=1,2,... (1.3)
The relation between the Coulomb force and the centrifugal force can be written in the following form:
2 2
€ mv
'r—z == (14)

where —e is the charge of the electron. We assume that the nuclear mass is infinite. Combining (/.3) and (/.4)
we obtain

2
v, = 2 (15)
and
L n’h
r, = 4—{2;6—2 (1.6)
The energy is
| 2 2 4
E = imvﬁ—% = -2:2’:; (1.7)

Bohr postulated that the electrons in these orbits do not radiate, despite their acceleration; they are in stationary
states. Electrons can make discontinuous transitions from one allowed orbit to another. The change in energy
will appear as radiation of frequency

vV =—" (1.8)

The physical basis of the Bohr model remained unclear until 1923, when De Broglie put forth the hypothesis
that material particles have wavelike characteristics; a particle of energy E and momentum p is associated with
a wave of angular frequency @ = E/#i and a wave vectork = p/h. The cotresponding wavelength is therefore

2t A
K=T=I; (1.9)

This is the De Broglie relation.

1.4 WAVE-PACKETS AND THE UNCERTAINTY RELATION

The wave and particle aspects of electromagnetic radiation and matter can be united through the concept
of wave-packet. A wave-packet is a superposition of waves. We can construct a wave-packet in which the waves
interfere with each other almost completely outside a given spatial region. We thus obtain a localized wave-
packet that can be considered an approximate description of a classical particle. A wave-packet consisting of a
superposition of plane waves may be written

1 ik-r
f(r) = ng(k)ek dk (1.10)
or in one dimension,
1 [ _
f&x) = —ﬁj g(kye™ dk (1.11)

The evolution of wave-packets is determined by the Schridinger equation (see Chapter 3). When a wave-packet
evolves according to the postulates of quantum mechanics (see Chapter 4), the widths of the curves f(x) and
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g(k) are related by

Ax Ak > 1 (1.12)
Using the De Broglie relation p = kk, we have

ApAx>h (1.13)

This is the Heisenberg uncertainty relation, if we try to construct a highly localized wave-packet in space, then
it is impossible to associate a well-defined momentum with it. In contrast, a wave-packet with a defined momen-
tum within narrow limits must be spatially very broad. Note that since # is very small, the notions of classical
physics will fail only for a microscopic system (see Problem 1.14). The uncertainty relation acts to reconcile the
wave-—particle duality of matter and radiation (see Problems 1.4 and 1.5).

Considering a wave-packet, one should distinguish between phase velocity and group velocity. For a wave
of angular frequency ® = 2mv and wave number k = 27/A, the phase velocity is

?v-le

v = Av (1.14)

p

This is the rate at which a point of constant phase travels through space. When a packet of waves differing in

frequency and in phase speed combines to create a region of strong constructive interference, the speed vy at
which the region advances is related to the angular frequency ® and wave number & of the component waves
by the relation

y = 22 (1.15)

Solved Problems

1.1.  Consider the four experimental results of the photoelectric effect described in Section 1.1. For each
result discuss whether it would be expected on the basis of the classical properties of electromagnetic
waves.

We refer separately to each of the effects described in Fig. 1-2.

(@) An electron in a metal will be free to leave the surface only after the light beam provides its binding energy.
Because of the continuous nature of the electromagnetic radiation, we expect the energy absorbed on the
metal’s surface to be proportional to the intensity of the light beam (energy per unit time per unit area), the area
illuminated, and the time of illumination. A simple calculation (see Problem 1.11) shows that in the case of an
intensity of 10" W/m2 photoemission can be expected only after 100 h. Experimentally, the delay times that
were observed for the same light intensity were not longer than 107 s. Classical theory is thus unable to explain
the instantaneous emission of eiecirons from the anode.

(b) With the increase of light energy, the energy absorbed by the electrons in the anode increases. Therefore, clas-
sical theory predicts that the number of electrons emitted (and thus the current) will increase proportionally to
the light intensity. Here classical theory is able to account for the experimental result.

(c} This result shows that there is a distribution in the energies of the emitted electrons. The distribution in itself
can, within the framework of the classical theory, be attributed to the varying degrees of binding of electrons
to metal, or to the varying amount of energy transferred from the light beam to the electrons. But the fact that
there exists a well-defined stopping potential independent of the intensity indicates that the maximum energy
of released electrons does not depend on the amount of energy reaching the surface per unit time. Classical
theory is unable to account for this.

(d) According to the classical point of view, emission of electrons from the anode depends on the light intensity
but not on its frequency. The existence of a frequency below which no emission occurs, however great the light
intensity, cannot be predicted within the framework of classical theory.

In conclusion, the classical theory of electromagnetic radiation is unable to fully explain the photoelectric effect.

1.2.  Interpret the experimental results of the photoelectric effect in view of Einstein’s hypothesis of the quan-
tization of light.
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1.3.

As in Problem 1.1, we refer separately to each of the effects described in Fig. 1-2.

(@) According to the hypothesis that light consists of photons, we expect that a photon will be able to transfer its
energy to an electron in a metal, and therefore it is feasible that photoemission occurs instantaneously even at
a very small light intensity. This is contrary to the classical view, which proposes that the emission of electrons
depends on continuous accumulation of energy absorbed from light.

(b) From quantum theory’s point of view, light intensity is equal to the energy of each photon multiplied by the
number of photons crossing a unit area per unit time. It is reasonable that the number of emitted electrons per
unit time (which is equivalent to the current) will be proportional to the light intensity.

(c) The frequency of the electromagnetic radiation determines the energy of the photons hv. Therefore, the energy
transferred to electrons in a metal due to light absorption is well defined, and thus for any given frequency there
exists a maximum kinetic energy of the photoelectrons. This explains the effect described in Fig. 1-2.

(d) Equation (/.1) can be given a simple interpretation if we assume that the binding energy of the electrons that
are least tightly bound to the metal is ¢ = hv,. The maximum kinetic energy of emitted electrons is v ~ 9,

Using the definition of stopping potential, eV, is the maximum kinetic energy; therefore, eV, = hv — hv,.

Consider the Compton effect (see Fig. 1-3). According to quantum theory, a monochromatic electro-
magnetic beam of frequency v is regarded as a collection of particlelike photons, each possessing an
energy E = hvand a momentum p = hv/c = h/A, where A is the wavelength. The scattering of elec-
tromagnetic radiation becomes a problem of collision of a photon with a charged particle. Suppose that
a photon moving along the x-axis collides with a particle of mass m,. As a result of the collision, the
photon is scattered at an angle 6, and its frequency is changed. Find the increase in the photon’s wave-
length as a function of the scattering angle.

Y ¥y
Ly
hid
hv E, 0
A x o x
nE
Before collision After collision
Fig. 1-3

First, since the particle may gain significant kinetic energy, we must use it by relativistic dynamics. Applying

hv  + E,; = ' + E
(before collision) photon pwaanicle photon  particle (after collision) (1.3.1)

where E,, is the rest energy of the particle (£, = myc?). The magnitudes of the moments of the incident and scattered
photons are, respectively,

hv

C

hv'

h
Py = = and p).'szf (1.3.2)

> 3

The scattering angle 8 is the angle between the directions of p, and p,. Applying the law of cosines to the triangle
in Fig. 1-4, we obtain

P’ =pi+p;—2p,p, cos O (1.33)
Recall that for a photon pc = hv; therefore, multiplying both sides of (1.3.3) by ¢2, we obtain
K+ 2 - 202wV cos § = pic? (1.34)
Using (1.3.1) we have
hv—hv' = E— Ey= k™2 + h2v? = 20w’ = E’ + E. - 2EE, (1.3.5)
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P,

Fig. 1-4

Relying on relativity theory, we replace EZ with EZ + p>c?. Subtracting (1.3.4) from (/.3.5), we obtain

~2h*wv' (1 -cos ) = 2E}-2EE, (1.3.6)
Therefore, using (/.3.1),
RPvv' (1 —cos ) = E,(E-Ey) = myc>(hv —hv") (1.3.7)
h vV Fa) ¢
We see that —— (1 —cos 8) = ¢ = ——= = A’ — A. Therefore, the increase in the wavelength AX is
m,c vv' vV
h
AL = A-A = —(l-cosB) (1.3.8)
my

V]

This is the basic equation of the Compton effect.

Consider a beam of light passing through two parallel slits. When either one of the slits is closed, the
pattern observed on a screen placed beyond the barrier is a typical diffraction pattern (see Fig. 1-5).
When both slits are open, the pattern is as shown in Fig. 1-5: an interference pattern within a diffraction
envelope. Note that this pattern is not the two single-slit diffraction patterns superposed. Can this phe-
nomenon be explained in terms of classical particlelike photons? Is 1t possible to demonstrate particle
aspects of light in this experimental setup?

el twam incident boam

iﬂhx;sityI Imtensity T
Seresn Suoreun
Fig. 1-5

Suppose that the beam of light consisted of a stream of pointlike classical particles. If we consider each of these
particles separately, we note thar each one must pass through either one of 1he slits. Therefore, the pattern obtained
when the two slits are open must be the superposition of the patterns obtained when each of the slits is open sepa-
rately. This is not what is observed in the experiment. The paitern actually obtained can be explained only in terms
of interference of the light passing simultaneously through both of the slits (see Fig. 1-6).

Yet, it is possible 10 observe particle aspects of light in this system: If the light intensity is very weak, the pho-
tons will reach the screen a1 a low raie. Then if a pholography plate is placed at the screen, the pattern will be formed
slowly, a point at a time. This indicates the arrival of separale photons to the screen. Note that it is impossible to
determine which slit each of these photons passes through; such a measurement would destroy the interference

pattern.
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1.5.

1.6.

huciden basm

1T

Fig. 1-6

Figure 1-7 describes schematically an experimental apparatus whose purpose is to measure the position
Af an alantenan A hagm AF alantearna Af wall_Adafimad o i :.. tha aas . ve x-difection
Ul qall cicv vl i vocailiii Ul CLCLI.I Ul Ul wcu-ucuucu lllUlllClllulll l lllUVlllE 111 Lkl W l c -"ullCLllUll

scatters light shining along the negative x-axis. A certain electron w111 scatter a certain photon that will
be detected through the microscope.

Electron Photon

Fig. 1-7

According to optics theory, the precision with which the electron can be localized is

A

sin 6

Ax ~ (1.5.1)

where A is the wavelength of the light. Show that if we intend to minimize Ax by reducing A, this will
result in a loss of information about the x-component of the electron momentum,

According to quantum theory, recoiling light consists of photons, each with a momentum Av/c. The direction
of the photon after scattering is undetermined within the angle subtended by the aperture, i.e., 20. Hence the mag-
nitude of the x-component of the photon is uncertain by

hv
Apx~27 sin 6 (1.5.2)
Therefore,

hv
AxAp, -2 sinO 5 ~ 4nh (15.3)

sin

We can attempt to overcome this difficulty by measuring the recoil of the screen in order to determine more pre-
cisely the x-component of the photon momentum. But we must remember that once we include the microscope as
part of the observed system, we must also consider its location. The microscope itself must obey the uncertainty
relations, and if its momentum is to be specified, its position will be less precisely determined. Thus this apparatus
gives us no opportunity for violating the uncertainty relation.

Prove that the Bohr hydrogen atom approaches classical conditions when n becomes very large and
small quantum jumps are involved.
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Let us compute the frequency of a photon emitted in the transition between the adjacent statesn, = nandn, =

2% me? ch ch
n— 1 when n » 1. We define the Rydberg constant R = 5 -S0,E, = —Rand E, = —R. Therefore, the fre-
quency of the emitted photon is h'c n; n;
2 2
n " (n+n)(n,—n)
V= k2 ZICR =— 2 2k cR (1.6.1)
ey nen;

n,—n, = 1,so for n » 1 we have
- 2.2 - .4
n,+n =2n ngn; =n {1.6.2)

Therefore, v = 2cR/n’. According to classical theory of electromagnetism, a rotating charge with a frequency f
will emit a radiation of frequency f. On the other hand, using the Bohr hydrogen model, the orbital frequency of the
electron around the nucleus is

v, an*me*

fa = 2nr, FEFR

{1.6.3)

or f, = 2cR/n’, which is identical to v.

Show that the uncertainty relation Ax Ap > % forces us to reject the semiclassical Bohr model for the
hydrogen atom.

In the Bohr model we deal with the electron as a classical particle. The allowed orbits are defined by the quan-
tization rules: The radius r of a circular orbit and the momentum p = mv of the rotating electron must satisfy
pr=nh (n=1,2,...). To consider an electron’s motion in classical terms, the uncertainties in its position and
momentum must be negligible when compared to r and p; in other words, Ax « r and Ap « p. This implies

AxAp
—=
rp

1 {1.7.1)

On the other hand, the uncertainty relation imposes
A;XA_p > i Ax Ap > l 2
rp T rp n (1.7.2)
So (1.7.1) is incompatible with (/.7.2), unless n » 1.

(a) Consider a thermal neutron, that is, a neutron with speed v corresponding to the average thermal
energy at the temperature T = 300K. Is it possible to observe a diffraction pattern when a beam of such
neutrons falls on a crystal? (b) In a large accelerator, an electron can be provided with energy over
1 GeV = 10° eV. What is the De Broglie wavelength corresponding to such electrons?

3
of an absolute temperature T is £ = fkT where k is the Bolzmann constant

urc b av 1 LiEigl

(a) The average thermal energ
(=4 (=4

(k = 1.38 x 107 J/K). Therefore, we have

<

h A
A= o 182
P AmkT (182)
For T = 300K we have
6.63x 107" .
A = = — =14 A (183
J3%1.67x10% % 1.38 x 107 x 300

This is the order of magnitude of the spaces between atoms in a crystal, and therefore a diffraction phenomenon
analogous to that of x-rays.

(b) We note that the electron’s rest energy is m,c’ = 0.5 X 10° eV. Therefore, if an energy of 10° eV is imparted
to the electron, it will move with a velocity close to the speed of light, and it must be treated using relativistic
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1.9.

1.10.

111,

1.12,

1.13.

dynamics. The relation A = h/p remains valid, but we have E = ,[p’c? + m2c*. In this example, mecz is neg-
ligible when compared with E, and we obtain

-34 B
hc 6 x 10 3Ix10 -
he _ 6.6 X = 12x 10" m= 1.2 fm (1.8.4)
E 1.6 x 10

With electrons accelerated to such energies, one can explore the structure of atomic nuclei.

A

n

The wavelength and the frequency in a wave guide are related by

A= (19.1)

[2 2
vi-v,
Express the group velocity v, in terms of ¢ and the phase velocity v, = Av.

First we find how the angular frequency ® depends on the wave number k. We have 0 = 2nv; sousing (/.9./),
we have

s ik,
k) = 2r i;+v0 =2n 4—n2+v0 (1.9.2)

Hence, the group velocity is

2 [—+v}
4n’

Supplementary Problems

{2 T
Refer to Problem 1.9 and find the group velocity for the following relations: (@) v = =Ll (water waves in shallow
P

3

water; T is the surface tension and p the density). (b) v = f%\ {water waves in deep water).

Ans. (a) Vg = 3V, (&) Vv, = 3V,

Suppose that light of intensity 107"° W/ normally falls upon a metal surface. The atoms are approximately 3 A
apart and it is given that there is one free electron per atom. The binding energy of an electron at the surface is SeV,
Assume that the light is uniformly distributed over the surface and its energy absorbed by the surface electrons. If
the incident radiation is treated classically (as waves), how long must one wait after the beam is switched on until
an electron gains enough energy to be released as a photoelectron? Ans.  Approximately 2800 years.

Consider a monochromatic beam of light of intensity { and frequency v striking a completely absorbing surface.
Suppose that the light is incident along the normal to the surface. Using classical electromagnetic theory, one can
show that on the surface a pressure called the radiation pressure is acting, which is related to the light intensity by
P = 1/c.1Is this relation also valid from the point of view of quantum theory?

hv
Ans. Yes. P = =N, where N is the flux of the photon beam.

Suppose that monochromatic light is scattered by an electron. Use Problem 1.3 to find the shift in the wavelength
when the scattering angle is 90°, What is the fractional increase in the wavelength in the visible region (say,
A = 4000 A)? What is the fractional increase for x-ray photons of A = 1 A?

1
Ans. Ak = ——(1-cosf) = 0.0243 A.ForA = 4000 A, the fractional shift is 0.006 percent. ForA = 1 A it
is 2 percent.  °
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1.14.

1.15.

INTRODUCTION [CHAP. 1

We wish to show that wave properties of matter are irrelevant for the macroscopic world. Take as an example a tiny

. . 15 . . .
particle of diameter | pm and mass m = 10 " kg. Calculate the De Broglie wavelength corresponding to this par-
ticle if its speed is 1 mm/s.  Ans. A = 6.6x 107 A.

Consider a virus of size 10 A. Suppose that its density is equal to that of water (g/cm’) and that the virus is located
in a region that is approximately equal to its size. What is the minimum speed of the virus? Ans. v, =1mfs



Chapter 2

Mathematical Background

2.1 THE COMPLEX FIELD C

The complex field, denoted by C, is the field generated by the complex numbers a + bi, where a and b are
real numbers and i is the solution of the equation x*+1 = 0,ie.,i = J=1.1f z = a + bi, then a is called the
real part of z and denoted Re (z); b is called the imaginary part of z and denoted Im (z). The complex conjugate
of z = a+ bi is a - bi and is denoted by z. Summation and multiplication of complex numbers is performed in
the following manner:

(a+bi) + (c+di) = (a+c)+(b+d) i (2.1)
(a+bi) (c+di) = (ac~bd) + (bc +ad) (2.2)
If z # O we define z ' and division by z by
-1 z a -b
zZ = — = + 1] 2.3
2z g+ b a + b (23
g = wz! (2.4)

Figure 2-1 represents a geometric realization of the complex field as points in the plane.

y
z=a+ib
b T ‘,.
-~
-
-~
-~
o
,f

Vo

o a X

Fig. 2-1

The distance between the point z and O is denoted |z| = Ja’ + 5% = »f?fz and is called the modulus of z. The
angle 6 is called the argument of z and denoted by arg(z). Since points in the plane can be characterized by polar
coordinates, i.e., a pair (r, 0) where r > 0 and 0 £ 0 £ 2%, one can write a complex number in terms of its mod-
ulus and argument. As one can easily verify,

a =rcosO b =rsin0 (2.5)
and
r = .\/a2+b2 0 = tan“‘(gj (2.6)
and therefore z = r(cos 8 +isin8) = re®®.

2.2 VECTOR SPACES OVERC

A vector space over C is a collection of elements V that is closed under associative addition (+) of its ele-
ments (called vectors), and that satisfies the following conditions for each o, fin C and v, # in V:

11
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1. V contains a unique element denoted O that satisfies
v+0=0+v =v (2.7)

0 is called the null vector.
ovisalsoin V.

a(v+u) = av+ou.
(aa+Byv = av+pv.
(a-B)yv = a(Bv).
0-v=0,00-0=0,1-v =,

SR W

An Important Example—C": Consider elements of the form (z,, z,, . . ., z,), Where the z; are complex
numbers. We define addition of such elements by

(ZppZg0 -2 Z2) + (W Wo ooy W) = (Z7+WL 2 +Wy .00, 2+ W) (2.8)
and we define multiplication by a scalar (a complex number z) by
(2,25 .. .22,) = (22),22y,...,122,) (2.9)

1t can be verified that the collection of these elements has all the properties of a vector space over C. This impor-
tant vector space is denoted C".

Some Useful Definitions: A collection of vectors i, . . ., u, in V span V if every element in V can be writ-
ten as a linear combination of the u’s; that is,

vV =au+---+ayu, (2.10)

where al,...,an are complex numbers. The vectors u,,...,u, are called linearly independen: if
au +---+au = 0impliesa, =a, =--- =a, = 0.1fu,...,u, are linearly independent and span V

s s ]l L,....,, AF T Tl o S P Nad thn Haeormcinmg ~F 1/ Quiecenon <
uwy are called a basis of V. The number 11 is unigue anda is called the dimension of V. Suppuac that W is a col-

lection of vectors from a vector space V. W is a subspace of V if: (1) for every v, w, in W, v + wis also in W; (2)
for every w in W and every scalar o, v is also in W.

2.3 LINEAR OPERATORS AND MATRICES

Linear Operators: Let V be a vector space over the complex field C. A mapT:V — V is an operator on
V if it satisfies the following condition for every o, B in C and every u, v in V:

T(av+Pu) = al (v) + BT (u) (2.11)
If T and S are linear operators, their sum, the linear operator T + S, is defined by
(T+8)(uw) = T(u) +S(u) (2.12)
for every u in V. Similarly, we define the product of two linear operators by
(T-S$)(v) = T[S(v)] (2.13)

for every v in V. The set of linear operators equipped with addition and multiplication is therefore an algebra
over the complex field. For now, let us restrict ourselves to a finite dimensional vector space.
Assume e, ..., e, is a basis of V and let T be a linear operator on V. Applying Tto ¢,, .. ., e, we get

T(e)) = 0gye -0y,

(2.14)
Te) =0, +---+0, e,
where 0;; are complex numbers. Now we define the mairix representation of 7 relative to the basis e by
ay ay a,
a2 A a.
(11, = (o) = - . (2.15)
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Note that the matrix representation of an operator is dependent on the choice of basis. For infinite matrices it
is possible to sum and multiply infinite matrices like finite matrices, though one must pay attention to con-
vergence whenever infinite sums are involved. Linear operators are of great importance in quantum

mechanics, since as we shall see in the next chapters, rhr-\v represent physical guantities such as energy,

......... b P

momentum, etc.

Inner Product: An inner product on V is a function (u, v} from V X V to the complex field (i.e., taking
every pair of vectors to a complex number), that satisfies the following conditions for every u, v, &' in V and o
inC;

0) (u,v) = (v,

(1)) (u+u,v)=(u v)+ ', v
(iii) (ou, vy = o {u, v)
(iv) (u,u)>0 ifuz0

(2.16)

A vector space that has an inner product is called an inner product space.
We can use the inner product to specify some useful definitions. The norm of a vector v is

I = (v, v (2.17)

Iffjv] = 1, then vis called a unit vector and is said to be normalized.
Two vectors # and v are said to be orthogonal if
(u,v) = 0 (2.18)

A set of vectors {u;} is orthogonal if any pair of two separate elements is orthogonal, that is, {u,u j) = 0 for
i #J. In particular, the set is orthonormal if in addition each of its elements is a unit vector, or compactly,

(u‘.., uj> = 8."}' (2.19)

where 5,7 is the Kronecker delta function, which is 0 for i #j and 1 otherwise. An important result, used fre-
quently in quantum mechanics, is the Cauchy—Schwartz inequality: For all vectors u and v,

{u, < Mlull - iv] (2.20)

Operators and Inner Products: Suppose T is a linear operatorTon V and suppose V is an inner product
space. It can be shown that there is a unique linear operator denoted 7' that satisfies:

(Tu,v) = {u, T'v) (2. 21)

for every u, v in V. This operator is called the conjugate operator of T. If A = (o;;) is a complex matrix, A'is
defined as A (a ;), 1.e., found by swapping indices and taking the complex conjugate IfA represents
operator T, then Al represents T", which justifies the use of the same symbol ¥ in both cases. If T = T',then T is
called a Hermitian operator or self-conjugate operator. f T = T’ ,then T is called an anti-Hermitian opera-
tor, If T preserves the inner product, that is, (Tu, Tv) = {u, v) for every u, vin V, then T is called a unitary
operator. If TT' = T'T, then T is called a normal operator. Two vectors v and u are called orthogonal if
(v,uy = 0.

2.4 EIGENVECTORS AND EIGENVALUES

Let T be a linear operator on V. A complex number A is called an eigenvalue (also known as characteristic
value) of T if it satisfies Tv = Av for some v in V. The vector v is called the eigenvector of T corresponding to

1 Tha cama dafinitian halde far matricas Nate that 1€ UV hae a hacic that cancicte af sicanvactare af T than T
Jw. 11w oadfiiv ublllllLlUll HULUO 11U LTIl IVGD,: LY UWW LERGL ll Y lia0 a UCIDID LIi1a \./ULIDIDID Ul \-«ls\.«ll V\.«\;LU]D UL &, LikwI] X ID

represented relative to that basis as a diagonal matrix. Diagonal matrices are not only easy to work with, but
also reflect important characteristics of the physical system such as quanta of energy, and so forth.

Characteristic Polynomial: Suppose that a given linear operator T is represented in some basis by the
matrix A. The characteristic polynomial of T is defined by

A(r) = det (Al - A) (2.22)
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where A is the parameter (scalar) and / is the identity matrix. The characteristic equation of T is defined by
A =10 (2.23)

These expressions are independent of the basis chosen.

The following result provides a method for finding the eigenvalues of a matrix or operator: The scalar A is
an eigenvalue of an operator T if and only if it is a root of its characteristic polynomial, that is, A(#) = 0.

If A is a Hermitian or unitary matrix, then there exists a unitary matrix U such that UA U'isa diagonal
matrix (this theorem will not be proved). Note also that if A and B are Hermitian matrices then a necessary and
sufficient condition that they can be simultaneously diagonalized is that they commute, i.e., AB = BA (see
Problem 2.13). These concepts have important physical meaning and will be discussed in greater detail in Chap-
ter 4.

2.5 FOURIER SERIES AND THE FOURIER TRANSFORM

Fourier Series: Consider a function f(x) over the interval 0 < x < /. The function is called square inte-
orable if

/
_[ £l dx (2.24)
0

is defined (i.e., convergent). It can be shown that the set of all such functions is an infinite dimensional vector
space, denoted L,(0, [). We can define for L,(0, /) an inner product

!
(.8 = J fx)g(x) dx (2.25)
0
Every function f(x) in L,(0, /) can be expanded in a Fourier series,
- 2
fix) = Z £ k,=-Fn (2.26)
n= -

k

According to this relation, we can consider the functions e, = je' «* as a “basis” of the infinite dimensional

space L,(0, /): Every function (vector) in this space can be expanded as a linear combination of the basis vec-
tors. It can be shown that the { e, } form an orthonormal basis, that is, (e,, ej) = 6,.1-. The coefficients f, in the
expansion are called Fourier coefficients and are derived using the relation

LN
S
o

S
>y
=~
[
(]
™~
—

Since the functions e, are periodic, of period /, it is not difficult to show that the Fourier expansion developed
above holds also for pericdic functions f(x) of period /.

Fourier Transform: Now consider a function f(x) defined on (—ee, o) that is not necessarily periodic, We
can imagine f(x) to be an approximation of periodic functions whose period approaches e, The numbers k,,
become progressively denser until we have in the limit a continuous range of functions e'**. This is the intuitive
basis of the following result:

f(x) = T;_;c F (k)e™* dk (2.28)
where F(k) is given by
] i —ikx
Fiy = =) f0 “ dx (2.29)
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F(k) and f(k) are said to be Fourier transforms of each other. The Parseval-Plancherel formula states that a
function and its Fourier transform have the same norm:

oo oo

(2o [ ,
| el = | IFkI dk (2.30)

2.6 THE DIRAC DELTA FUNCTION

In Section 2.3 we used the Kronecker §,,, function, which returns the value 1 whenever the integers n and
m are equal, and 0 otherwise. There is a continuous analogue to Kronecker’s 8-function—the Dirac delta func-
tion (Dirac 8-function). Define the function 3 (x) as

£ £

: for -5<x<3

d.(x) = e (2.31)
[ 0 for x> 5

Consider the arbitrary function f(x), well defined for x = 0 with negligible variation over the interval
[-e/2, €/2]. If € is sufficiently small, then we have

oo

J' 3. (x)f(xy dx :—:f(O)j 8.(x)dx = f(0) (2.32)

Taking the limit as € — 0 we define the 3-function by

o o° Ry

limo{j 3 (0)f(x) dx} = J’ Hx)fix)dx =f(0) (2.33)

—oo

More generally, we can write

J’ O (x~xp)f(x)dx = fixy) (2.34)

—oco

o

One can easily show thatJl O(x—y)dx = land that 8 (x—y) = O for x#y. Although we use the term 8-

—oo

function, it is not a function in the regular sense; it is really a more complicated object called a distribution (it
is not defined at the point x = y). That is, we only consider it when it appears inside an integral:

f ->J FOd(x—y)dy (2.35)

As this is a linear operation that maps a function to a number, the d-function can be viewed as a functional.
The d-function is often used to describe a particle located at a point ry = (x, y,, Z,) in a three-dimensional
Euclidian space by defining a 8 (r —r):

B(r-ry) = 8(x-x,)8(y-yy)6(z-z) (2.36}
s o VP JENPUUNIE R - 3. S RRY S T . SR | =l el tln Avlatainms Al s bl alas M abl edtbas Lo R oaalal o
10C IMNICETAL U1 O OVET UIC WHUIC Space 1S 1, HIUILAUTE UIC CAICIICE UL LIC pallicic. Wil LIC ULHCT Halld, O valllsIes

whenr #r.
It is straightforward to demonstrate that the following results hold for the 8-function:

L 8(-x) = 8
1
2. 8(ox) = mﬁ(x)
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3 xd(x—xg) = x5d(x —xp)

4-_[ d(x-y)d(y-2)dy= d(y-2)

The S-function and the Fourier Transform: The Fourier transform of the d-function is

o 1 —ikx
3(k) = 72—-;_[ B(x—y)e dx = ﬁ k (2.37)

The inverse Fourier transform then yields

oo oo

1 —jky | 1 k(x—
Bx-y) = 5| e e ak = 2_1:,[ e dk (2.38)

—o0 —00

Solved Problems

2.1.  The complex conjugate of z = a +bi is a~ bi, denoted by 7. Show that (@) zz = |2|°; (b) z + z is real;
(€)z,+2z, = 21+235 (d) 2,2, = 7125 (€) |z, z)| = |z,||24)-

(@) zz = (a+bi)(a—bi) = a vy = |z|
(b) z+z = (a+bi)+ (a-bi) = 2a, which is real

(&) z,+2zy, = {a,+b,) + (ay+5,i) = {a,+6) +({b +5i
(qy+ay)) — (b +byi= (a,—bi) + (a,—b,i) =z,+1,
(a,+b,i) (a,+byi) = (aja,—b,b) + (a b, +a,b))i

= a,a,-b by~ (a,b,+a,b)) i = (a,-b,i) (a,—byi) =12)2;

@ zz,
(e) |z]zz|2 = 2,2,7,2, = 2,2,2)2 = 2,212,1)= \zl|2|zz|2

1+
2.2. Calculate 1-i/) -

T I R L SN C) SR
() .

14i)s ﬁ (COS 45° + sin 45° ) ( e(n:/4 )5
Method b: _ i
1-1 L/z (cos 45° - sin 45°) } L o
= (‘f’mn) Y= ™ = cos90° +isin 90° = i 2.2.2)

2.3. Show that the sum and product of two linear operators are linear operators.

Suppose that T and § are linear operators, so
T+ (u+av) =T (u+ov) +S(utov) =T (u) +al(v) +S(u) +asS(v)
(T+8) () +a(T+85) (v) (2.3.1)

]
3

(T-S) (u+ov)y =T[S(u+av)] = T[S(w)+aS(v)]
= T[S(w)] +aT[S()] = (T S) (u) +a(T-S) (v) (23.2)

24. Let V be the space of infinitely differentiable functions in one variable. Prove that differentiation is a
linear operator.
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d
We define the map e from Vo V:

d
S0 ='W (24.1)

and using basic calculus we get

d d d
L Frag) = [frogl =f'(x)+agx = () +az-(g) (24.2)

2.5. LetVbeC,ie., the collection of n-tuplesa = (a,,...,a,), where the a, are complex numbers. Show

that (a, b) = ZaiB,- is an inner product of V.
i=1

We begin by checking the four conditions that an inner product on V must satisfy:

/- -,\_v T - ~ . 7= X PPN I
{a,b) = La-o,- = ah, = (b, a) (2.3.1)

¢

1Ngs

i=1 i

{a+a,b) = 2 (a,+d,)b, = za‘-l_)ﬁz‘a', -b; = (a,b) +(a', b) (2.5.2)

i=1 =1 1=1

and

(aa,b) = ) (aa)b; = 0 Y api = afa,b) (2.5.3)

1=1 t=1

(a,a) = zn‘a,c_z, = i[ajz (2.5.4)

i=1 i=1

and is greater than zero if one of the g; is different from zero.

2.6. If A and B are operators, prove (a) (AT) "= A; (h)(AB) T BTAf; (0)A +A*, [(A —Af) , and AA' are
Hermitian operators.

(a) ForeveryuandvinV,

(Av,u) = (v AWy = (AT, ) = (u, (ADY) = (A" v W)

Thus we obtain A = (A*) '
(b) Foreveryuand vinV,

(v, (ABY'w) = (ABv,w) = (Bv,A"w) = (v,B'A"W) (2.6.1)
Hence, B'A" = (AB) "
(c) We write
A+ANY = AT+ AN = AT+A = A4+ 4 (2.6.2)
Here we use the fact that the sum of conjugates is the conjugate of the sum, (A + B) oAt B', whicb can
be easily verified, and we also use the result of part (a). .
li(A-ANH1T =7@a-A" = -i(a'-4) = i(a-4ahH (2.6.3)

where we have used the fact that the conjugate of a complex number is the same as its conjugate as an operator,
ie., z* = z. And finally,

+

AAHT = (AH A" = 4AA (2.64)

according to part (b).
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2.7.

2.8.

2.9.

2.10.
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Show that the eigenvalues of a Hermitian operator are real.
Suppose A is an eigenvalue of T,and T = T'. For every v#0inV,
Adv, vy = Av, vy = (Tv,v) = (v, Tv) = (v, Av)
= (v = A (w) (2.7.1)

Since (v, v) is a real positive number (v #0), it follows that A = A, so A is a real number. The fact that the eigen-
values of Hermitian operators are real is of great importance, since these eigenvalues can represent physical
quantities.

Show that eigenvectors that correspond to different eigenvalues of a Hermitian operator are orthogonal.
Suppose Tv = Av and Tu = pu, where {1 # A. Now,
Adv,uy = (Avou) = (Tv,u) = (v, Tfu) = (v,Tu) = (v, lu) = 1—1(11, u) (2.8.1)
$0,

(A=p) (vuy = (A—p) (v, ) = 0 (2.82)

(L = W, since T is Hermitian). But A — 1 0; therefore (v, u) = 0, i.e., v and u are orthogonal.

Show that Hermitian, anti-Hermitian, and unitary operators are normal operators.

If 7 =T then TT' = T'T = 7°. Also, if T = -T' then TT' = T'T = -7°. If T is unitary, then
(Tu, Tv) = (u,v) forevery u, v in V, Using the definition of conjugate operator and taking 4 = v, we get

(uyu) = (Tu, Tu) = {u, TT u) (2.9.1)

{u, (I-TTHYu) = 0 (2.9.2)

forevery uin V. Since [ - TT' is a Hermitian operator, it follows (prove!) that / — TT' = 0. This also completes the
proof of T being a normal operator.

Let V be the space of nonzero square integrable continuous complex functions in one variable. For every
pair of functions, define

oo

(fg) = I f0g(x) dx (2.10.1)
Show that with this definition V is an inner product space
We must check the following conditions:
(g = J. f(x)g(x) dx = j g0fxydx = (g.f) (2.10.2)

F+f 8

J [f(x) +f' ()] g(x) dx = _[ f(X)@dHI f(x)g(x) dx

—0

(2.10.3)

Lo+

and

(af, g) -J afx)gx)dx = j fgx)dx = alf, g) (2.104)

—o0 —oo
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2.11,

2.13.

2.14.

&p =j Fh? dx (2.10.5)

Since f'is continuous and f# 0 in a neighborhood, its integral also differs from zero; hence {f, f} 2 0.

(a) Show that if (v, u) = (v, w) for every v in V, then u = w. (b) Show that if T and § are two linear
operators in V that satisfy (Tv, u) = (Sv, u) foreveryu,vinV,then § = T.

(a) The condition (v, u) = {v, w) implies that (v, u —w) = 0 for every v in V. In particular, if v = u—~w we
obtain
{u—w,u—w) =0 (2.11.1)

Hence, u —w = 0, thatis, u = w.
(b) According to part (@), {Tv, u) = {Sv, ) forevery v, # in V implies thatTv = Sv;ie,T = §.

Let A and B be Hermitian matrices. Show that A and B can be simultaneously diagonalized (that is, with
the same matrix and only if AB = BA
Suppose UA Ul = D, UBU ™ = D, where D| and D, are diagonal matrices. Hence,
U(ABYU ' = UAU'UBU' = DD, = D,D, = UBU 'UAU™' = U(BAYU"' (2.12.1)

Multiplying on the right with U and on the left with U we get AB = BA. We leave it to the reader to prove the
other direction. This result is of great importance in quantum mechanics.

Show that the modulus of the eigenvalues of a unitary operator is equal to 1.

Suppose T is a unitary operator, and let v # 0 be an eigenvector with an cigenvalue A. Then,
(v, V) = {Tv,Tv) = {Av,\v) = ?J_L(v, ¥) (2.13.1)
Hence,

AL = A =1 (2.13.2)

Suppose that f is an integrable function. (@) If A # 0 is a real number and g(x) = f(Ax + y), prove
that

U eosn (K
Glk) = e A'/AF(x) (2.14.1)
where F and G are the Fourier transforms of fand g, respectively. (b) Prove that if xf is also integrable,
then F(k) is a differentiable function, and
Flf'(x)] = Fl-ixf(x)] (2.14.2)
(a) By definition,
. . kN (hx vy kvl
G(k) = J g)e ™ dx = j Frx +y)e ™ dy = j f(kx+y)e( K ')e v xd(lx+y)
1 i , 1, (k
= 3¢ ’Mf fyeritnsds = 3e7F (X) (2.14.3)
) J , A

—oo

(b) Consider the expression

F(k+h)—F(k) _ ___1_ - —tkx € ._l
— 'JEJ f@e ( p )dx (2.14.4)

—oo
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[
+a
n
p —

Show that (@) F [8 (x—xy)] = F[8(x)1e "0 (b) F[8(ax)] = éF[a(’—‘)].

(a) By definition,
| ; 1 o .
Fld(x—xp)] = :/_2_;.“ 9 (x—x,) e dx = :/—2—_1C-" d(2) e e ™ dz = F [8(x)] e*%0 (2.15.1)
(b)

1 . 1 1 . 1 k
F[d(ax)] = Ej S(ax)e ™ dx = EI ;8 (z)e " dz = ;F [8(;)] (2.15.2)

Supplementary Problems

Prove the triangle inequality for complex numbers; that is, show that |z, + z| < |z)| + |2,

Show that the vectors (1, 1, 0), (0, 0, J2), and (i, i, [) are linearly dependent over the complex field.
(01N .

Find the eigenvalues and eigenveciors of the matrix A = L O}' Hint: If A is an eigenvaiue, then Ay = Av, or

(A— AN v = 0 forsome v #0; this implies that det (A —AI) = 0. Solve this equation for A, then substitute A and

1 1
findV. Ans‘ XI: l, vlz[l), ?t.;!:—l, sz(_l).

Show that the matrix

cos® ~sinB
( ) (2.19.1)

sin@ cos0
is unitary. If u = (;) is a vector in the plane, what is the geometric interpretation of . — Tu?
1 1 | 1 1
Demonstrate that the system 75_1_{ ﬁ sin &, ﬁ sin 2k, .. ., ﬁ cos £, ﬁ cos 2k, . .. } is also orthonormal.

Consider the space of polynomials with degree less than or equal to n. We can think of each polynomial

p(x) = ay+a;x+ - +a,x" as a vector in the space C" " ! (aga,, ..., a,). Infact, this is the representation of
d

p(x) relative to the basis { 1, x, ..., x"}. What is the matrix that represents the operator ax relative to this basis?

ot 0 - 0

0 o 2 : O
Ans. A :

0 0 : : n

o o0 : - 0

2
Find the Fourier transform of ¢~ /2. Ans. F(r) = e™* 72
' . . T-Xx . T S (-
(a) Find the Fourier series of f(x) = 7 - 0 < x < 2. (b) Using part (a), show that 3= In+l
o0 oo n=0
n

N
X
[
—
)
=
a
N |
>
1l
L
R EY
=
kY
H
z
= |~
=
-
"



Chapter 3

The Schrodinger Equation and Its Applications

3.1 WAVE FUNCTIONS OF A SINGLE PARTICLE

In quantum mechanics, a particle is characterized by a wave function W(r, 1), which contains information
about the spatial state of the particle at time 7, The wave function y(r, #) is a complex function of the three coor-
dinates x, y, z and of the time ¢. The interpretation of the wave function 1is as follows: The probability dP(r, 1)
of the particle being at time ¢ in a volume element dr = dxd 'ydz located at the point r is

dP(r, 1) = Cly(r, t)|2d3r (3.1)

where C is a normalization constant. The rotal probability of finding the particle anywhere in space, at time ¢,
is equal to unity; therefore,

de(r, rn =1 (3.2)
According to (3.7) and (3.2) we conclude:

(@) The wave function y(r, r) must be square-integrable, i.e.,

Ilw(r, ol dr (3.3)

is finite.
(b) The normalization constant is given by the relation

1
o Ilw(r, ol dr (3.4)

When C = 1 we say that the wave function is normalized. A wave function y(r, f) must be defined and contin-
uous everywhere.

3.2 THE SCHRODINGER EQUATION

Consider a particle of mass m subjected to the potential V(r, r}. The time evolution of the wave function is
governed by the Schrodinger equation:

owy(r, ¢ #2
ih w&()t ! - —ngVZ‘P(rs 1+ V(r, ny(r, §) (3.5)

where V7 is the Laplacian operator, 3% /3x* +9°/3 y2 +3%/3:. Pay attention to two important properties of the
Schrodinger equation:

(@) The Schrodinger equation is a linear and homogeneous equation in Y. Consequently, the superposition
principle holds; that is, if y (r, £), y,(r, 1), . . ., W, (r, 1) are solutions of the Schrodinger equation, then
n

Yy = Zai\p‘(r, 1) is also a solution.

n

21
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(b) The Schrédinger equation is a first-order equation with respect to time; therefore, the state at time ¢,
determines its subsequent state at all times.

3.3 PARTICLE IN A TIME-INDEPENDENT POTENTIAL

The wave function of a particle subjected to a time-independent potential V(r) satisfies the Schrodinger
equation:
yr,ny

RS = =V, )+ VW, D (3.6)

~! (A and @ are constants), where

Performing a separation of vartables w(r, 7) = ¢(r)x(s), we have x(#) = Ae
o(r) must satisfy the equation
2

o2
—5=V0(r) + V(D)o(r) = hoe(r) (3.7)
where #.@ is the energy of the state E (see Problem 3.1). This is a stationary Schrédinger equation, where a
wave function of the form
w(r, ) = o(r)e™® = gryet* (38)

is called a srationary solution of the Schrédinger equation, since the probability density in this case does not
depend on time [see Problem 3.1, part (b)]. Suppose that at time 7 = 0 we have

I, 0) = 3 0,0) (3.9)
n
where ¢ (r) are the spatial parts of stationary states, W (r, t) = §( r)e '®’ In this case, according to the super-
n\- 7/ r r J L A Y=/ ] S r
position principle, the time-evolution of y(r, 0) is described by
yr, b = zqa(r)e"'“’n' (3.10)

n

For a free particle we have V(r, t) = 0, and the Schrodinger equation is satisfied by solutions of the form
yr, 1) = Ae'*Fmo) (3.11)

where A is a constant; & and © satisfy the relation @ = #k2/2m. Solutions of this form are called plane waves,
Note that since the y(r, r) are not square-integrable, they cannot rigorously represent a particle. On the other
hand, a superposition of plane waves can yield an expression that is square-integrable and can therefore describe
the dynamics of a particle,

Jg(k)ei[k-r—m(k)f] d3k (3]2)

wr, 1) = (21y>2

A wave function of this form is called @ wave-packet. We often study the case of a one-dimensional wave-
packet,

1 .
W, n = yr j g(k)e' Fx— ohl gy (3.13)

3.4 SCALAR PRODUCT OF WAVE FUNCTIONS: OPERATORS

With each pair of wave functions ¢(r) and y(r), we associate a complex number defined by

(0, ) = j¢*(r)w(r) d¥ (3.14)

whete (0, ) is the scalar product of ¢(r) and y(r) (see Chapter 2).
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An operator A acting on a wave function y(r) creates another wave function W'(r). An operator is called a
linear operator if this correspondence is linear, i.e., if for every complex number o, and o,

Alow () + o,y,(r)] = oAy (r) + a,Ay,(r) (3.15)

There are two sets of operators that are important:

(a) The spatial operators X, Y, and Z are defined by

X\"(X, )’, Zs t) = X\"(X, y: 27 t)
Yy(x, y, 2,0 = yyx, y, 2, 1) (3.16)
ZY(x, y,z,8) = (X, v, z, 1)

(b) The momentum operators p,, p , and p_ are defined by

o
P, Y, 2,0 = Ta—xw(x, ¥, 2,1

h d
PV, Y, 2,0 = SV, ¥, 2, 0) (3.17)

fi d
pVX Y, 2,0 = T3 Y, 4, 1)

The mean value of an operator A in the state y(r) is defined by

(A = er) [Ay(D)] d'r (3.18)

Thao vt o _caiegnmn Aoviatinmg 1o dafi
LIIC FUOi-meUdri-offudr € Levidiitrn 15 uc

AA = J(AD - (aY (3.19)
where A is the operator A - A.

Consider the operator called the Hamiltonian of the particle. It is defined by
ﬁ2 2 p2
H = __271V +V(r, 0= ot V(r, 1 (3.20)
where p is a condensed notation of the operator pf_ + pf + p2 Using the operator formulation, the Schrodinger
equation is written in the form

dy(r, ¢
it "’g )~y 1 (3.21)

If the potential energy is time-independent, a stationary solution must satisfy the equation
Ho(r) = Eo(r) (3.22)

where E is a real number called the energy of state. Equation (3.22) is the eigenvalue equation of the operator
H; the application of H on the eigenfunction ¢(r) yields the same function, multiplied by the corresponding
eigenvalue E. The allowed energies are therefore the eigenvalues of the operator H.

Consider a particle described by a normalized wave function W(r, r). The probability density is defined by
2
p(r. 1) = |y, 1) (3.23)
At time 1, the probability dP(r, ¢} of finding the particle in an infinitesimal volume & ’ located at r is equal to

dP(r,t) = p(r, d’r (3.24)
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The integral of p(r, 7) over all space remains constant at all times. Note that this does not mean that p(r, ¢) must
be time-independent at every point r. Nevertheless, we can express a local conservation of probability in the
form of a continuity equation,

dpg;, 1)) +V . Jor,n =0 (3.25)
where J(r, 1) is the probability current, defined by
h 1 fi
Jo, 0 = 21V (V) -y (W] = ;,Re[w(;vwﬂ {3.26)

Consider two regions in a space where their constant potentials are separated by a potential step or barrier,
see Fig, 3-1.

V(x) V(x}

(a) (b)
Fig. 3-1 (a) Potential step; (b) potential barrier.

We define transmission and reflection coefficients as follows. Suppose that a particle (or a stream of parti-
cles) is moving from region I through the potential step (or barrier) to region II. In the general case, a stationary
state describing this situation will contain three parts. In region I the state is composed of the incoming wave
with probability current J, and a reflected wave of probability current J . In region II there is a transmitted wave
of probability current J...

The reflection coefficient is defined by

Ir
= j= 3.27
R 7, (3.27)
The transmission coefficient is defined by
Jr
T = J_’ (3.28)

Solved Problems

3.1.  Consider a particle subjected to a time-independent potential V(r). (2) Assume that a state of the particle
is described by a wave function of the form y(r, 1) = ¢(r)x(f). Show that x(f} = Ae™® (A is constant)
and that ¢(r) must satisfy the equation

ﬁz
—5=V70(r) + V() = hg(r) (3.4.1)

where m is the mass of the pafticle. (b) Prove that the solutions of the Schridinger equation of part (a)
lead to a time-independent probability density.
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(a) We substitute w(r, £) = ¢(r)x(s) in the Schrédinger equation:

dx(t #
mo0 2L — [V | + xovima (3.12)

In the regions in which the wave function y(r, ) does not vanish, we divide both sides of (3.1.2) by ¢(F)x(#);
so we obtain

ihdxn 1

ﬁ2
X0 dr = o [—2—’;V2¢(r)] + V() (3.1.3)

The left-hand side of (3./.3) is a function of ¢ only, and does not depend on r. On the other hand, the right-hand
side is a function of r only. Therefore, both sides of (3.1.3) depend neither on r nor on ¢, and are thus constants
that we will set equal to i for convenience. Hence,

_1dyn .ﬁd[lnx(t)] _
x(n dr TF dt =

it Ao (3.14)

Therefore,

Iny(e) = J'—io) dt = —iwt+C = y(1) = Ae™™™ (3.15)
where A is constant. Substituting in (3./.3), we see that ¢(r) must satisfy the equation
e
3=V + V(E)Or) = heoe(r) (3.1.6)

(b) For a function of the form y(r, 1) = ¢(r)e™, the probability density is by definition
p(r, ) = lw(r, 0" = [0m)e™] [0 ™)™ = br)e ™ o¥r)e™ = lor)* (3.17)

We see that the probability density does not depend on time. This is why this kind of soiution is caiied
“stationary.”

ol

3.2.  Consider the Hamiltonian for a one-dimensional system of two particles of masses m, and m, subjected
to a potential that depends only on the distance between the particles x, - x,,

2
H — P_f_ &. V 32
T 2m, +2mz+ b =) .

(a) Write the Schridinger equation using the new variables x and X, where

m X, + myx,
X = x,—x, (relative distance) X = ————— (center of mass) (3.2.2)

m_ Lm
ey

T iy

(b) Use a separation of variables to find the equations governing the evolution of the center of mass and
the relative distance of the particles. Interpret your results.

(@) Interms of x, and x,, the wave function of the two particles is governed by the Schrédinger equation:

a\V(x[s xzy t) flz az\lI(x]s x?_’ t) ﬁ2 BZW(xlv xzv t)
ih——=—— = Hylx;, x,, 1) = -5 2 -5
ot 2 2m;  9x? 2my,  9xl

+V(x, =x)ylx, x, 0 (3.2.3)

In order to transform to the variables x and X, we have to express the differentiations 3/ ax} and 3’/ 9x}in
terms of the new variables. We have

ox ox X m X m
dx, - dx, dx,  m +m, ox,  m, +m, (3.24)
Thus, for an arbitrary function f(x,, x,) we obtain
Foox) FENx FENX _onX) ™ FxX 325
dx, =~ ox ox," X 8x,T " ox Tmo+m, oX (3.25)
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Similarly,
af(-xeZ) _ af(x, X)_(?i Ma_x N af(x’ X) m, a_f(x,X) 12
ax, =~ 9x dx ' 0X dx,~ ~ ox ‘m+m, oX (3.2.6)
or
o d m, 0 o o m, i
ox, ax " m, +m,0X ox, =“(§+ml +m,aX (3.2.7)

For the second derivatives in x, and x, we have

3 (a il a)(a il a) (328)

aﬁ: axtm, +m,oX \ox t m +m,0X
L, m 29, . m 23 (m Vi
3 T A m,dxdX T m )+ mydXox T \m my) gy

The wave function must be a smooth function for both x, and x,, so we can interchange the order of differen-
tiation and obtain

-

Gy ‘fi 2m_ 9o 120
é;%‘axfr m+my) gyt m, +m,0X0x (3.22)

For x, we have
O (Lo, M 3y 8, m 3y o (. m JO Im 93 .,
_8_)c+ml+m23X —a—)c+m1+m28X —3x2+ m +m,/ gx*  m,+m,0Xox (3.2.10)

a_’xg =
Substituting (3.2.9y and (3.2.10) in (3.2.3), we get
Y X, 1) _ fz_?(a2 ( m, )2 &’ 2m 30

=7 = 2m, _B_xl + m, +m, 8X2+m——_1 +mza—Xa—x}\|J(x,X, )]
LI (o fi 2m 99
T2my| 302 T \m emy) 32 T m, +myaXax wix, X, ) + Vyix, X, 1)
B 1 az\ll(x,X, 9] #2 1 32
~ _7[’—"—1 + E)_—axz +Vx)y(x, X, 1)~ —2'(’"] +’"2)8_X2W(x’ X, n (3.2.11)

Since the Hamiltonian is time-independent, y(x, X, t) = o(x, X)) (¢) (we separate the time and the spatial var-
iables; see Problem 3.1). The equation governing the stationary part 6(x, X) is Ho(x, X) = E,,0(x, X), where
E . is the total encrgy. Substituting in (3.2./1) we arrive at

R +mz)a2¢(x,)o ﬁz( ! ]azq»(x,X)

W\ T, ) g VRN - ) o = D@ X) (3.2.12)
Performing a separation of the variables §(x, X) = E(xm(X), (3.2.12) becomes
“2EN Tmm, ) g YY) T TR0m, my gy2 T Eow (3.2.13)

The left-hand side of (3.2./3) depends only on x; on the other hand, the right-hand side is a function only of X.
Therefore, neither side can depend on x or on X, and both are thus equal to a constant. We set

2 1 9
Al _1 dnm g (3.2.14)

1 '
2w v my, gyt - Ll (3.2.15)

Note that the wave function corresponding to the center of mass of the two particles behaves as a free particle
of mass m, + m, and energy E_ . This result is completely analogous to the classical case. Returning to



CHAP. 3]

THE SCHRODINGER EQUATION AND ITS APPLICATIONS 27

(3.2.13), the equation for the relative position of the two particles is

R My M9 E(x)
"2( mym, ZJ ; + V) = Egay ~Ecn (3.2.16)

Equation (3.2.16) governs the stationary wave function of a particle of mass (m, + m,) /m m,held in a poten-
tial V(x) and having a total energy £, — E_.. Thus the relative position of the two particles behaves as a
particle with an effective mass (m, + m,) /m m, and of energy £, — E. held in an effective potential V(x).
This is also analogous to the classical case.

total

3.3.  Consider a particle of mass m confined in a finite one-dimensional potential well V(x); see Fig. 3-2.

Vix)

Vo

VyV

—
—
—

Fig. 3-2

d{x) _

av
Prove that (@) —— rrol (p) and (b) —— d(p} = <_d—x>’ where (x) and (p) are the mean values of the

: . dvy . .
coordinate and momentum of the particle, respectively, and <_d—x> is the mean value of the force acting

on the particle. This result can be generalized to other kinds of operators and is called Ehrenfest’s
theorem.

(a) Suppose that the wave function y(x, 7) refers to a particle. The Schrodinger equation is

oy(x, ! iﬁazw(x,z) i
\lf'_g[ - Im gy " R/VED (3.3.1)

W) _ AWk

I
and its conjugate equation is 3 "I an + EV( O (x, ). [Notice that we assume V(x) to be

o

real,] The integral-[ [y(x, t)|2 dx must be finite; so we get

ay(x,ny . dwx D
ax = lim ax =0 (332)

lim |wx,0l®= lim |y, >=0 and  lim

X oo X —) = X —3> oo

Hence, the time derivative of {x) is

ay df” ,
-%=d_r_[ v, Day(x, 1) dx = I W( )xw(x,t)dx+J. v x, Dx— s —

oo

“’( LD (3.3.3)

Substituting the Schrédinger equation and its conjugate gives

dm _ b [ P
i~ 2m ox

—eo

Jff;U W 0 Wi’) }‘é_[ W DV, 0 dx

. 2%
= P im U dJ ";x(f VD e 1) de - j v, )X ‘”( )dx} (3.3.4)
-+

xy(x, O dx + éJ. v, DV, 1) dx
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Integration by parts gives

a(x if ay*(x, 1 LM ER)) 2
—-dT = —2m §l_’m{l: J ox [XW(.X, t)]dx
oy(x,
[‘I’ (x, Nx Wéx ):|_g J ax[\ll (x, l)x]-y(—x—dx} (3.3.5)

Using (3.3.2), the first and third terms equal to zero; so we have

d{n _ i . [_J Bwa(x, n r f)dxm J' Bw (x, N Bw(x, D
_&

dt 2M g 3w dx
Ay (x, ) Iy(x, 1) X, )
+I "’a(x VD dx+ J v t)-lgx—dx (3.3.6)
_:
Eventually, integration by parts of the first term gives
d{x) ih : : oy, 1)
X N X
el ém lgnWU LA f)]ig+2_" LAes t)—wa—x‘dx]
% %
if Bw(x, n, _1
= ,,J 07 = 7ip) (337)
Consider the time derivative of {p):
dp) _ 4 i ﬁaw(x, n R avies :)E_iy(_x,_ W9
& S di) YD) dx = 3 Py arg) v *(x, )3, 3 (33.8)

Since y(x, t) has smooth derivatives, we can interchange the time and spat1al derivatives in the second term.
Using the Schridinger equation, (3.3.8) becomes

d h? “82 *(x, Hoy(x, 4
d{p) _ ___J _m_‘i%;‘_dx J VO o, n—3— Wa(x 2

dt 2m ox’
w2 . wwy 3
+§‘,‘,;J. Les f)““gxg—dx— naea D3y [V wix, nldx (3.3.9)
Integration by parts of the first term gives
&
| vt nowik D . { ay*(x, NAy(x, 1) Iy*(x, 03 w(x, 1)
]'_"r ax ox dx = g'_',nm “ox ox | ~ ox Y —dx (3.3.10)
- [ =& -5
Using (3.3.2), we arrive at
I*(x, DI Y,
1= lim |-] DLEDIVED, (3.3.11)
Eee 7 ox
Again, integration by parts gives
9’ 3]
I= F’lim{ [\v (x, )—‘E(x— _r“’ o, !)J&—dx} 'r J—BS’ dx (3.3.12)

Retumning to (3.3.9), we finally have

orveing
o e T I

—on

'r wEr, z)V(x)—"’(i)dx < ‘;:) (3.3.13)

-oo
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ap(r, 1)

3.4. Consider a particle described by a wave function y(r, ¢). Calculate the time-derivative FYBR where

P(,)

p(r, 1) is the probability density, and show that the continuity equation +V-J@r, 1) = Oisvalid,

1 3
where J(r, ) is the probability current, equal to - Re [w*( TVW)] .
Using the Schrodinger equation,

oy(r, !
i Wgr ) V W(r, 1) + V(r, Hy(r, 1 (34.1)
A . . . L 3\U (r,n e, x )
ssuming V(x) is real, the conjugate expression is —ihi——=—— Y = - 2mV Yo, H+ V(r, Dy (r, ). According

to the definition of p(r, 1), p(r, 1) = y*(r, H)y(r, 1); hence,

ap(r, d ,
pf}, n_ ¥ ([ )\y(r D+, n—— W( H (34.2)

Using (3.4.1) and its conjugate, we arrive at

r
o5 - [Zmzvz‘“*(r o] wie, o - ﬁV(r DY, Dy(r, ) -y, z)[zm,V wr.)

+ff_z“’*(r‘ DV(r, Dy(r, 1) = _ﬂﬂ' [y, t)Vzw(r, ) —y(r, z)Vzw*(r, 5l (3.4.3)

We set

1 h
Jir,n = aRe[w*(;V\y)J 2”” [w*(r, Vy(r, n—y(r, nVy*(r, 1)) (344)
Using the theorem V- (UA) = (VU )-A + (V- A), we have

v-Jr o = 2m,[(V\v )+ (V) +y* (V) = (V) - (Vy™) -y (Viy*) ]

= 2,,“[\41*\7 v-y Vi (34.5)
$O
ap(r,n
_—at +V. J([', [) =0 (3.4.6)

3.5. Consider the wave function
Wix, 1) = [AelPx/h 4 Beipx/h] pmip’t/2mh (35.1)
Find the probability current corresponding to this wave function.
The probability current is by definition

A oy dy*
jxn = 2,,“(\11 a‘f =¥ w) (3.5.2)

. . —_ ; z . - -
The complex conjugate of y is y*(x,7) = (A%e px/h . BXeipxrhy ot /2R o 4 direct calculation yields

3 % (ip - ip ) ( ip : ip
; - — ~ipx/h * iprshy | (L pipxih_ Ep ipesh | | L 4% ipxsh | R posk ipxsh —ipx/ﬁ:l
Jix, 0 2ml[(A € +Be ) ﬁAe ﬁBe ﬁA € + ﬁB e (Ae + Be )
p f.. 12 i Aimesk s mk Dinc/h 1 el o a2 a¥m Ak ok Dinx/h 1ol
= 53— (JA]"—A"Be=P"2+ AB """ — |B|") — (—|A|" —A"Be ##** + AB" ™ """ +|B|")
2m|_
2iae 2
= ;[IAI - B ] (3.5.3)
Note that the wave function y(x, r) expresses a superposition of two currents of particles moving in opposite direc-
tions. Each of the currents is constant and time-independent in its magnitude. The term ™7 "/2"* implies that the

particles are of energy p*/2m. The amplitudes of the currents are A and B.
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3.6.

3.7.

3.8.
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Show that for a one-dimensional square-integrable wave-packet,

J. Jx)dx = (o) (3.6.1)

m

where j(x) is the probability current.

Consider the integral J- hy(x, r)Ide. This integral is finite, so we have lim |y(x, :)I2 = 0. Hence,
x — oo

) wf ( n NeR)
J. jwdx = 5 [ *(x, 1y e “’ v, t)w—axx——}dx (3.62)

Integration by parts gives

- : -
J‘ Y, D Iy ( ’t)dx = éIim {[w(x, ny*x, t)] 5—.‘- aw( : )lu*(x t)dx} —J. v, s W( )dx (3.6.3)
e e - £

£ .

1uert:10re, we have

92
m (3.6.4)

- NS
J. Jyde = ;J. v, t),ax‘u(x, Hdx =

—o0

Consider a particle of mass m held in a one-dimensional potential V(x). Suppose that in some region V(x)
is constant, V(x) = V.Forthis region, find the stationary states of the particle when(a) E> V, (b) E<V,
and (c) E = V, where E is the energy of the particle.

(a) The stationary states are the solutions of

2ﬁ J 96x) + Vo = Edx) {3.7.1)
m 32
For E > V, we introduce the positive constant £ defined by hzkz/ 2m = E -V, sothat
d
a¢(2 X +Ko(x) = (3.7.2)
The solution of this equation can be written in the form
Ox) = A+ Ale ™™ (3.7.3)
where A and A’ are arbitrary complex constants.
() We introduce the positive constant p defined by ﬁ2p2/2m = V- E;s0(3.7.]) can be written as
d o(x
aq’ 2 _ 0% = 0 (3.74)
The general solution of (3.7.4) is ¢(x) = Be®  + B'e™™ where B and B' are arbitrary complex constants.

(c) When E = V we have
complex constants.

= 0; so ¢(x) is a linear function of x, ¢(x) = Cx+ C' where C and C' are

3*6(x)
2

Consider a particle of mass m confined in an infinite one-dimensional potential well of width a:

0 Lcox<t
Viz) = 2 2 (3.8.1)
oo otherwise
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For x >a/2 and x < —a/2 the potential is infinite, so there is no possibility of finding the particle outside the
well. This means that

w(x>g) =0 w(x<§)=0 (3.8.2)

Since the wave function must be continuous, we also have W(a/2) = y(-a/2) = 0.For—a/2 < x < a/2 the poten-
tial is constant, V(x) = O; therefore, we can rely on the results of Problem 3.7. We distinguish between three
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3.9.

possibilities concerning the energy E. As in Problem 3.7, part (a), for £ >0 we define the positive constant ,
#K/2m = E; so we obtain ¢(x) = Ae™** + A'e™**. Imposing the continuous conditions, we arrive at

I Aettar2 4 Ae-ihar2 = II Aeitar2 g Aleitar2 = {3.8.3)
Multiplying (3.8.31) by ei%9/2 we obtain A' = —Ae'*®, Substituting A’ into (3.8.311) yields
Aeikar2 _ pgitagital2 = () (3.8.4)

Multlplymg (3.8.4) by e-i*a’2 and dividing by A [if A = 0 then y(x) =0] we obtain e7*¢ — ¢**¢ = (_ Using the
relation ¢'® = cos o + i sin & we have -2i sin (ka) = 0. The last relation is valid only if ka = nm, where # is an
integer. Also, since k must be positive, n must also be positive. We see that the possible positive eigenenergies of
the particle are

Bk R (nn) _ A’

" (3.8.5)

2ma®
The corresponding eigenfunctions are

v (X) — Aeik,,x _Aeik,.ae—ik,‘x = Aginnise _ ginn (@~x)ra — Aeimc/Z [eimt(.r/a—l/'l) —e-inmi{x/a- I/2)]
n
) x 1
= Csin | nn 273 (n=12,..) (3.8.6)
where C is a normalization constant obtained by

a/2
1 . x 1
-C—i = “- sin? [nn({—l—i)]dx (38.7)

-a/2

—

d
Defining y = g— 3 anddy = ;x, (3.8.7) becomes

r’ r° -

aJ sin? (nny) dy = gJ [1-cos (2ray)]ldy = mmumy;J (3.8.8)
-1 -1

3]

mr—
‘<

(ST~

i
—C—i 2nn

Therefore, C = +/2/a. Finally,

W, (x) = ﬁsin [nn(g- %)] (3.8.9)

Consider now the case when E<0. As in Problem 3.7, part (b), we introduce the positive constant p,
#2p’/2m = —E. Stationary states should be of the form y(x) = Be" + B'¢™*, Imposing the boundary conditions,
we obtain

I  Berer2 4 Bleparl = I  Beras24 Blera’2 = (3.8.10)
Multiplying (3.8.101) by ePe/2yields B' = —BeP?, 50 Be "2 — BeP ¢P*’? = 0, Multiplying by ¢?*/? and dividing

by B, we obtain | — £?P% = (. Therefore, 2pa = 0. Since p must be positive, there are no states with corresponding
negative energy.

Finally, we consider the case when F = 0. According to Problem 3.7, part (c), we have y(x) = Cx+ C".
Imposing the boundary conditions yields

a a
C§+C'=0 —C§+C'=O (3.8.11)

Solving these equations yields C = C' = 0, so the conclusion is that there is no possible state with £ = 0.

Refer to Problem 3.8. At ¢+ = O the particle is in a state described by a linear combination of the two
lowest stationary states:

W(x, 0) = oy, (1) + By, (0) (lod*+1BI” = 1) (3.9.0)

(a) Calculate the wave function y(x, 7} and the mean value of the operators x and p, as a function of time.
(b) Verify the Ehrenfest theorem, md(x) /dt = {p ).

(a) Consider part (¢) of Problem 3.1. The time-evolution of the stationary states is of the form

y,(x 8) = o (x)exp(—iE t/h) (3.9.2)
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Consequently, using the superposition principle gives

yx, 0 = oy, (xn 1)+ By,(x, 1)
{fx IV (—nziﬁt\ (—n: zﬁrﬁ

- Q[Jﬁslntnk——-JJexpL o JJH}W sml_2n:k 2}JexpL | (3.9.3)

We now calculate

as
(x) J. v, Oxyix, £ dx = J‘ a2y T (x, 0+ BHyr(x, ) x [ay(x, £ + By,(x, 1)) dx

—a/?2

a’/2 a’/?
a2J. x|y, (x, t)i2 dx + BZJ‘ x|yl t)|2 dx + 2Re [a*ﬁj‘ i, Dyx, 1) dx] (3.94)
-a/2 -a/?

-a/2

Consider each of the three elements separately:

ra/2 r

3 a S x 1Y
I EJ xjy(x, 0| dx = i_' X sin [nkE—EJJ dx (3.9.5)
-a/2 —a/s2
Defining y = j—;— %, dy = dzx’ 80
0 0 0
I = aJ. (2y+ 1) sin? (my) dy = 2aJ‘ ysin? (my)dy + aJ‘ sin? (my) dy (3.9.6)

-1 -1 -1

Solving these integrals yields

, - [y* ysin(2ry) cos (21'ty)_|0 [y sin(2ry)]° a a .
I, = La I— an - 81’!2 ,|+a i_T 71=—§+§=U (3.9.7)
One can repeat this procedure to show that
a/?2 a’?
2 2 . x 1
IQEJ. xw,(x, 1)) dx = Ej' x sin? [27:[;—5)}1): =0 (3.9.8)

—a’2 —a/2

. . . . V.
Note that this result can arise from different considerations. The function f(x) = sin? [211:(2 - i)] is aneven
function of x:

non(5-3)] = [sman (G 3)] = [on(an(Z e 5)en )]

"sm2n( ﬂ = f(%) (39.9)

f=x)

On the other hand, f(x) = x is an odd function of x; therefore, x sin® 27 (x/a—1/2)] is an even function
of x, and its integral vanishes from —a/2 to a/2.Consider now the last term in (3.9.4):

a’? a/
2 ) x l) ) ( 1) L 2itit
= * = = -z
13=J. Xy, Dy, Hdx = “J._szsm [n(a 3 }sm [Zn 273 ] exp Py dx (3.9.10)

-a/2

Defining y = x/a—~1/2,dy = dx/a, and ® = 3n°A/2ma?, we obtain

{}

0
. 1]t ]
ae““"J. (2y + 1) sin (qy) sin (2ny) dy = ae” J. (2y+ 1) 5 [cos (ry) - cos (3my) ] dy

Iy

16a _,
= o3 o (3.9.11)

Finally, returning to (3.9.4) we obtain

32
(x) = 2 Re (o*Be™ ) = 9—’; [Re (0*B) cos (¢) + Re (ia*P) sin (@) } (3.9.12)
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Consider the mean value of the momentum;

a2 a’s2
X A Y, 1) OY,(x, 1)
{p) =I W WD dx = —~J. LWl + BTV 0] [a e ]dx (3.9.13)

We calculate separately each of the four terms in (3.9.13):
as2 ars
*awl(x,t)dx _2r ) (x 1) (x l)
W g 2sm[n 1.3 ]cos [n 3 de (3.9.14)
-a —-a/

1 1
sin [n(g - i]:l is an even function of x and cos [n[g - i)] is an odd function, so their product is an odd func-

tion, and therefore the integral of the product between x = —a/2and x = a/2 equals zero. Also,
a/2 a/2
aW2(x 9] 22x . (x 1 1
J. 2\‘12 (x, 1) e dx = P . sm[Zn [—z—i)]cos[mt(a 2)]4& (3.9.15)
—-a/ -a

(x 1Y7. - . (x 1M

[, [ X x 11 e fha o -
sin LLTIK a - 2)J 1s an odd function of x and cos I_Lnk - 2}J Is an cven ong; inererore, tneir product 1s an odd

function, and thus the integral between x = —a/2 and a = 2 vanishes. We have

a/2 as2
a\l’z(x 7) 4n x 1 (x 1 ;
— = — . 2 2 -iwr
I_J. \yl x, 0 dx E sin [n(a 2)] coS [21: - 2):Ie dx (3.9.16)
~a’? -a/?
. x 1 dx .
Defining y = il and dy = P the integral / becomes
0
L. B _4nrcos(my) cos(3a)7° o _ 8 i
I= aze J.. sin(My) cos (2Ay)dy = p |: T on lle = 3¢ (3.9.17)
Finally.
a/2 a/2
= aW(x,f)dx_2_n inl?2 ('E 1) [ ('E 1) imrdx 3
= \yz(x 3] X =7 sm[n 2°2 ]cos ! a_Z]e (3.9.18)
-a/s2 —a/2
Using the same definitions used above, we arrive at
0
Z 2 i 2, [ cos (My) _ cos (My)JO -8
= pal sin (2my) cos (My)dy = T o 7L (3.9.19)
Substituting the results in equation (3.9.13), we finally reach
8h =i i
() = 3,,,( a*pe”™~ ape 1 (3.9.20)
{b) In part (a) we obtain
16a 3in’h 3in’h
(x(D) = ;{; [a* exp(—zma2 t) +ap* exp[ Al zﬂ (3.9.21)
Therefore, we have
d(x) _ 16a3in W, 3n’ik In’ik 8% g0
MY = M, { —a*fexp —2""121 + of*exp 2ma2t = 310 [5e aﬁ (3.9.22)
By inspection, the last expression is identical to {p ). Thus, for this particular case Ehrenfest’s theorem is

verified.

3.10. Refer again to Problem 3.8. Now suppose that the potential well is located between x = Oand x = a:

{ 0 0<x<a
Vo = . otherwise (3.10.4)

Find the stationary eigenstates and the corresponding eigenenergies.
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We begin by performing a formal shift of the potential well, ¥ = x—a/2, so the problem becomes identical to
Problem 3.8:

{ 0 —a/2<x<a/2
Vix) =

{ =  otherwise (3.10.2)
Using the solution of Problem 3.8, the possible energies are
232,2
f
E, = "7—"7 (3.10.3)
ma

where 7 is a positive integer. The corresponding eigenstates are

v, = Jg sin[m:(g - %)] (3.104)

Or, in terms of the original coordinate, we have

y,(x) = «Esin(’%x—nn) (3.10.5)

Consider the step potential (Fig. 3-3):

v Vo x>0 (3.11.1)
=10 x<o
Vix)
Yo
_— ) e—————————— - === -
_X‘>
I I
X
Fig. 3-3
Consider a current of particles of energy £ > V,, moving from x = —oe to the right. (a) Write the station-

ary solutions for each of the regions. (b) Express the fact that there is no current coming back from
x = +oo to the left. (¢) Use the matching conditions to express the reflected and transmitted amplitudes
in terms of the incideat amplitude. Note that since the potential is bounded, it can be shown that the
derivative of the wave function is continuous for all x.

(@) Referring to Problem 3.7, part (a), we define

2mE Am(E—V
ky = f:z k, = —(52—) (3.11.2)

Then the general solutions for the regions I (x < 0) and II (x > 0) are
0i(x) = A1+ Ay e Op(x) = Ape™r 4 Ay el (3.11.3)

(b) The wave function of form &** represents particles coming from x = —oo to the right, and e~** represents
particles moving from x = +e to the left. ¢,(x) is the superposition of two waves. The first one is of incident

narticlac nranaoating from laft tn rioht and 1e af amnlitinda 4 tha cacnnd « ic nf amnlituda and ranra_
}l“l W iwd PI\IPHEHIIIAE ALNAIEL AWl B/ llslll ClliN A W wul_rutuu\.« lll, W JwwASLIA wavu 10 W/ (Llll'lllll-lu\( nl [V LV Y l\rl.llv

sents reflected particles moving from right to left. Since we consider incident particles coming from x = —oo
to the right, it is not possible to find in II a current that moves from x = +co to the left. Therefore, we set
A, = 0.Thus, ¢;(x) represents the current of transmitted particles with corresponding amplitude A,,.

(c) First we apply the continuity condition of ¢(x) at x = 0, $,(0) = ¢y(0). So substituting in (3./1.3) gives

A+ A = A, (3.11.4)
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IP(x
Secondly, —g—g'() should also be continuous at x = Q; we have

9¢(x) 9, (x) )
a[x = ik,A,e* V- ik A et E;Ix = ik,A et (3.11.5)
. 0040y 30,(0) ,
Applying = Tox e obtain
ik (A, — A)) = ik,A, (3.11.6)
Substituting A, gives A, + A} = (A, — A}) k,/k,, which yields
Al k—k
A_l = r vk, (3.11.7)
kl ~ kz
Eventually, substituting (3./1.7) in (3./1.4) yields Al(l t LTk ) = A,; therefore,
1 T
A, 2k
ol Y (3.11.8)

3.12. Refer to Problem 3.11. (@) Compute the probability current in the regions I and Il and interpret each
term. () Find the reflection and transmission coefficients.

(a) For a stationary state $(x}, the probability current is time-independent and equal to

fi 3(x) 99*(x)
J(x) = ﬁli(l)*(x) ox — ¢ gx ] (3.12.1)
Using (3.11.3) for region I, we have
f * -tk x * 1k x . tkox - v~k x
J@) = o[ (Aje ™" +Ae™ ik A= ik Ale)
ik x v ik ¢ > * ik x . 1% gk X ﬁk' 2 ) |2
— (A et Ao (i ATe N ik AT ) ] = — (A —|4ayH (3.12.2)
Similarly, for region II we have
h ¥ _—thox p - ik, x thax . —ikqx ﬁkz 2
Jylxy = 5= [Aye™ 2 (iky) 1" — Aye'™2" (~iky) 7] = *‘r‘n“]A2| {3.12.3)

The probability current in region I is the sum of two terms: fik, |A,|2/ m corresponds to the incoming current
moving from left to right, and —#k, |A', fz/ m cormresponds to the reflected current (moving from right to left).
Note that the probability current in region Il represents the transmitted wave.

(b) Using the definition of the reflection coefficient (see Summary of Theory, refer to Eq. 3.27), it equals

A *ak, /m | A
=%, ,_ = |a (3.12.4)
|A|| ek, /m |
Substituting (3.11.7), we arrive at
2
(k,—k,) 4k k
= o — (3.12.5)
(k; + k) (k, +ky)
The transmission coefficient is
A Bk /m kA o
— [’("‘_| (3.12.6)
A, fik, /m il
Substituting (3.11.8), we arrive at
k 2k 2 4k k
T 2( - ) =12 (3.12.7)
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3.13. Consider a free particle of mass m whose wave function at time ¢ = 0is given by

Ja [ e
Vo0 = o) € ka7 ¢ (3.13.1)
Calculate the time-evolution of the wave-packet W(x, r) and the probability density |y(x, t)|2. Sketch
qualitatively the probability density for <0, r = 0, and 7> 0. You may use the following identity: For
any complex number o and B such that —n/4 < arg (o) < /4,

2 2 b8
j e—a (y+PB) dy = % (3.13.2)
: - thx s . 4 okt
The wave-packet at + = 01is a superposition of plane waves ¢™* with coefficients Iz e o "7 this (s

n)3/4

a Gaussian curve centered at k = k,. The time-evolution of a plane wave e"** has the form e'**eF0¥% =

ikx

2 . . . . . .
et ihI2m We set (k) = hk*/2m, so using the superposition principle, the time-evolution of the wave-packet
wr(x, M is

h A s

2 2 . |
y(x, b = _[ P (3.13.3)

(21[)3/4 »

Our aim is to transform this integral into the form of (3.13.2). Therefore, we rearrange the terms in the exponent:

2 2 2 2
a . a it a ) a
-7 k=ko) ™ +i [kx~ (k)] —[—+‘—m)k2+(5ko+u)k—;4—k§

2 2 2 2
2 ( 2 +z‘x“ (”—k +ix) 2
1 0 0
_ (e, m) 20 e TR 3134
e zm}[ 2(0_+@_‘]J 4(2_ i‘) *
4% Im 4% 2m

( azk;) (az )2
oy = =2 ANt 2ot 3135
X, = EXp| —5— A3,
W 3sagl/d a_2 E_ﬁ,_t p az+2”” 1 )
2t om m

The conjugate complex of (3.13.5) is

( a k;) (al )2
LTSN “/‘—1 A 4 [ Eko“ H -| ’
Yixt) = 73 exp - (3.13.6)
23/‘1 a_z_tﬁ_t { az_ZIﬁt J
4 2m m

Hence,

a’k, : a’k, ?
) - +idtkx \ ) - x'—idtkyx

lW(xa t)l ex +
me ,ﬁ, a2 ﬁ) P T e 2item a—2ikt/m
m

Im
| “2_" PR ( ) 4hika’ ]
F 1 R ) 28\ —=2-x )+ Xt
" Nng? 1+4ﬁ2t2/m2a4 at varitsm’

2a (x ﬁkot/m) :|
a' v 4k’ m

2

I
nat | + a#? tz/mza

(3.13.7)
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W(x, n)2
(2
\ na?
—————-
t=0 N

Fig. 3-4

The probability density is a Gaussian curve for every tlme t entered at x. = (fik,/m)t. (i.e., the wave-packet
moves with a veloclty V, = ﬁko/ m.) The value of hy(x, t)l is maximal for + = O and tends to zero when 1 — oo,
The Wl(lln of the wave-pacxer is minimal for { = O and tends to oo when 1 — ool S€C l"lg 3-4.

3.14. Consider a square potential barrier (Fig, 3-5):

0 x<0
Vix) = Vo O<x<! (3.14.1)
0 l<x
Vi(x)
Vo
I I 11
0 ) x
Fig. 3-5

(a) Assume that incident particles of energy E > V,, are coming from x = —e. Find the stationary states.
Apply the matching conditions at x =0 and x = I. (b) Find the transmission and reflection coefficients.
Sketch the transmission coefficient as a function of the barrier’s width /, and discuss the results.

(@) Similar toc Problem 3.7, part (@), we define

PmE {2m(E—V)
= —F ky = —----_--—--—f12 0 (3.14.2)

Thus, the stationary solutions for the three regions I (x < 0), I1 (0 < x <), and ITI (x > /) are:

¢1(x) - A,e”‘l‘+ Avle—iklx

Oy(x) = A,er 4 Aneh? (3.14.3)

PPN  ikx a1 ik x
[q)m(X) = A:,L’ "+ A€ )

Each of the solutions describes a sum of terms representing movement from left to right, and from right to left.
We consider incident particles from x = —oo, so there should be no particles in region IIIl moving from x = e
to the left. Therefore, we set A'; = 0. The matching conditions at x = / enable us to express A, and A’, in
terms of A,. The continuity of ¢(x) at x =/ yields () = ¢ (]}, so

ikyd

Aje? 4+ Ayehl = At (3.14.4)
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The continuity of ¢'(x) yields

ik Aye™Y — ik, Aye ™! = ik Ay (3.14.5)
Equations (3.14.4) and (3.1/4.5) give

kytk,
A2 = I:z—kze “l kZ][j|A3

ek (3.14.6)
' 27 M Pk, +
4= [,
The matching conditions at x = 0 yield
0,00 =0,00) = A, +A =A,+A, (3.14.7)
and
0(0) = 63(0) = KA - ik A = ikA, - ik AY (3.14.8)
so we obtain
k +k, k, —k,
A = 2%, A + 2%, A2 (3.14.9)
Using (3.14.6), we can express A, in terms of A,
2
- M)_ k) ! Ky =4y kg + k)
1T ARk, - T Ak, © A,
(k, + k) —(k,-kz) (k, +k2) + (k, =k _ v
= ak K, cos (k,l) —i ak k, sin (kyl) |e VA,
[ K + k5 1
= {cos (kD) - sz k, sin (kzl)Je”‘l’A3 (3.14.10)

Similarly, we express Aj in terms of A

(b, +h)(k,— k)

Ay =

k -k, k +k, (k, + k) (k, — k) )
Zk A + 2k 2 _ |: 1 2 [ 2 e,(kl_k2]1+ .(k +k2]1]A3

(& k2)+(k — &Y - - (k-1 ? ' o
= kK, cos (k,0) +1 ak &, sin (k,/) |A ’2k x, sm(k he™A; (3.14.11)

(b) The reflection coefficient is the ratio of squares of the amplitudes corresponding to the incident and reflection
waves (compare to Problem 3.12):

v |2
R = |4 (3.14.12)
AI
Using the results of part (@), we obtain
K-k ?
2%k, S (k) (- 1D sie? (kyl)
R = ST 5 = . (3.14.13)
Ky +k; 4kik; + (K2 = k3)“ sin? (ky0)
cos?(k,l) + 2k x, sin (k,/)
Finally, the transmission coefficient is
] 4Kk
- - L2 (3.14.14)
|4, ki —k

AR+ (- ) sin (kyt
cos? (k,l) +L TN J sin? (k,1) o+ (ki —hy) (k)
The transmission coefficient oscnllates periodically as a function of ! (see Fig. 3-6) between its maximum value

(one) and its minimum value [1 + V /4E(E-V,)] . When ! is an integral multiple of n/k,, there is no
reflection from the barrier; this is called resonance scattering (see Chapter 15).
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3.15.

4k} k3
4k} k3 + (k3 - k3)?

Consider the square potential barrier of Problem 3.14. Find the stationary states describing incident par-
ticies of energy E < V. Compute the transmission coefficient and discuss the results.

The method of solution is analogous to that of Problem 3.14. Referring to Problem 3.7, we define

2mE 2m(V,~E)
i ey p= f———ﬁ‘; (3.15.1)

The stationary solutions for the three regions I (x < 0), I (0 <x <), and II (x > [y are
o) = Aeht+ Aok
Oy(x) = A + Aye™ (3.15.2)

[¢m(x) = A}"ik]x"’ Aye™h*

We describe incident particles coming from x = —eo, so we set A = 0. Applying the matching conditions in x = /
gives
oul) =0, () = Aje + Ay =A et (3.15.3)
o) = Oul) = A,pe’’- Ao =ik, A e (3.15.4)
From (3.15.3) and (3.15.4) we obtain
A, = [E—;—pl—k—'e“"‘l"”},g Ay = [p;—;k'e“"l””]a, (3.15.5)
The matching conditions at x = 0 yield
0,0 =000 = A +A] =A,+ 4 {3.15.6)
0(0) = 0u(0) = kA ~ik A} =pA,-pA; (3.15.7)

From (3.15.6) and (3.15.7) we obtain
ik, +p ik —p

A = 20k, A, + 20k, A} (3.15.8)
Using (3.15.5), we arrive at
[ Gk, +p) (ik, - p) 1 [ &-p? 1.
A = W—e(”‘"p” _;T;Tl—lf)-l—e('kﬁp”JA«’ = L—iﬁ sinh (pl) + cosh(pl)Je'""A3 (3.15.9)
Finally, consider the transmission coefficient:
T = :“_jz - k;_ ) = — L (3.15.10)

p* |’ ki+p
cosh?(pl) + 2Hp sinh?(p!) 1+ —é"k';'b" sinh?(p!)
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where we used the identity cosh? o — sinh® ¢ = 1. Hence,

T AEV, " E) 3.15.11
- . [.2mv,—E? (4310
4E (Vy—E) + V3 sinh | “———|

We see that in contrast to the classical predictions, particles of energy E < V; have a nonzero probability of crossing
the potential barrier. This phenomenon is called the runne! effect.

In this problem we study the bound states for a finite square potential well (see Fig. 3-7). Consider the
one-dimensional potential defined by

0 (x<—a/2)
Vo = 1 Y -a/2<x<a/? (3.16.1)
0 (a/2<x)
Vix)
—a/2 a/2
X
I II III
_Vﬂ
Fig. 3-7

(a) Write the stationary solutions for a particle of mass m and energy ~V, < E < 0 for each of the regions
I(x<-a/2),1(-a/2<x<a/2),and Il (a/2 < x). (b) Apply the matching conditions at x = —a/2
and x = a/2, Obtain an equation for the possible energies. Draw a graphic representation of the equa-
tion in order to obtain qualitative properties of the solution.

(a) Referring to Problem 3.7, we define

_ [2mE _ 2m(E +V)
p = 52 k= 'T' (3.16.2)

Then the stationary solutions for each of the regions ar

L

$(x) = AeP + A7
Oy(x) = Be* + B (3.16.3)
O(x) = C'e?* +Ce™

Since ¢(x) must be bounded in regions I and III, we set A' = C' = 0; therefore,

Jq),(x) = AeP!

Rpikx + ch—ikx

L0

P1s £
l¢1|1(x) = Ce™® (3.16:4)
(b) The continuity of ¢(x) and ¢'(x) at x = —-a/2 yields
Ae P92 = Be-ika/2 y B'pikas2
pAeP? = ikBe k/2 — jk B¢t/ (3163)
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Similarly, the matching conditions at x = a/2 yield

{ Ce—pa/z = Beika/2+B|e—fi(a/2

3.16.6
_pcefpa/Z — l~kBer'ka/2_ikB-e-ika/2 ( )
Hence, we can express B and B' in terms of A:
+ ik : - ik -
B = (pzl’i el-p+ikasl )A B = (_pzﬂi gl-p+ikias2 )A (3.16.7)
We substitute (3.16.7) in (3.16.6) to obtain
_(prik .. o p—ik_, )
C_(2ik"’c_ ST 5168
R _(p+lk tka p—ik—lkﬂ) ' '
“uC =\ e e A

To obtain a nonvanishing sotution of (3./6.8), we must have

plo+ik ., o-ik ..\ [(o+ik . p—ik .
a2k € 2kt )= \Umm et e ) (3.16.9)

which is equivalent to

p - lk )2 . _2ika
(p+ik =¢ (3.16.10)
Equation (3./6./0) is an equation for E, since p and k depend only on E and on the constants of the problem.
The solutions of (3./6.10) in terms of E are the energies corresponding to bound states of the well.
We shall transform (3./6.10) to express it in terms of k only. There are two possible cases. The first one is
AV
I (=Y | e (3.16.11)

~oa Tk
1

The left-hand side of (3./6.1 ) is a complex number of modulus 1 and phase -2 tan-! (k/p). (p + ik is the com-
plex conjugate of p — ik.) The right-hand side of (3./6./1) is also a complex number of modulus 1, and its phase

is T+ ka(—e'" = ™. %% = ¢' " **y Therefore, we have
tan*‘(s) = —(g+ %) = g = tan [—(g+%a):’ = — an(g+ %) = col(%) = m (3.16.12)
and

tan(%q) = € (3.16.13)
We define &, = 2’:2‘/0 = m , where the parameter &, is E-independent. Consider

1 ka) K2+ p? (,;O)z
cos? (ka/2) 1+tan2( 2= JE =\ {3.16.14)

Equation (3./6.11) is thus equivalent to the following system of equations:

(’12) _k
cos| 3 )| = k.
{3.16.15)
(5)
tan| 5 | > 0
where we used (3./6.13) and (3./6.14) together with the fact that both p and & are positive
We turn to the second possible case, 1.2,
P ik )2 _ ika
II (p+r’k = e (3.16.16)
Similar arguments as in case I lead us to
k) ka k
- -1 - = -~ ==
2 tan (p ka = tan > 5 (3.16.17)
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Consider
ka) tan? (ka/2) k2
in2 | — = =
sin ( D) 1+ tan? (ka/2) I (3.16.18)
Thus,
o[k - £
sin| 5 )| = i
(3.16.19)

(%)
tan{ > <0

In Fig. 3-8 we represent (3.16.15) and (3./6./9) graphically. The straight line represents the function &k /&, and

ol 5
sin 2

the sinusoidal arcs represent the functions and . The dotted parts are the regions where the

(%)
cos 3

ka
condition on (an( —2‘) is not fulfilled.

n/a 2n/a 3n/a Arja ky Sr/a k

Fig. 3-8

The intersections marked with a circle represent the solutions in terms of k. From these solutions it is possible
to determine the possible energies. From Fig. 3-8 we see that if k, < w/a, that is, if

nlh?

2ma’

n

Vo<V, (3.16.20)
then there exists only one bound state of the particle. Then, if V| £V, < 4V there are two bound states, and so
on. If V,» V,, the slope 1/k; of the straight line is very small. For the lowest energy levels we have
approximately

k=— (n=123,...) (3.16.21)

a

and consequently,

2ﬁ2 2
E= "zma”z -V, (3.16.22)

Consider a particle of mass m and energy £ > 0 held in the one-dimensional potential —V,6(x — a). (@)

Inteorate the stationarv Qr‘hrnrhnapr eauation between g—¢e and g + £. Tn]nno the limit £ — ﬂ show

egrate stationary Schrodi equation between g and a Taking the limit
that the derivative of the elgenfunchon 0(x) presents a discontinuity at x = a and determine it. (b) Rely-
ing on Problem 3.7, part (a), ¢(x) can be written

Aet + Aje* x<a

o)
d(x)

(3.17.1)

Aze”” + Aok x>a
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where k = N2mE/#2. Calculate the matrix M defined by

A2 Al
o =M (3.17.2)

\ Ay VA
(a) Using the Schrédinger equation,
h? d%x)
-3m e +V,0(x ~ a)d(x) = Edlx) (3.17.3)

Integrating between a — € and a + € yields

2 dz ad+E a+E

a-—-EgE a-g
According to the definition of the &-function (see the Mathematical Appendix), the integration gives

B ( dow)| do(x)|
2m\ dx | T dx |

17

Voblay = EJ olx) dx (3.17.5)

),
7

A=a+é Xx=g-

Since ¢(x) is continuous and finite in the interval [g — &, a + €], in the limit € — 0,

A\ do) L do(x)
2m x—a dx A—a dx

X>da xr<yd

+V,b(x) = 0 (3.17.6)

We see that the derivative of ¢(x) presents a discontinuity at x = a that equals 2mV ¢(a) /4>
(b) We have two matching conditions at x = g. The continuity of ¢(x) at x = a yields

Ao+ Ajemika = A 04 Ay emike (3.17.7)
where the second matching condition is given in relation (3./7.6) and yields
2
2 (Ajike’™ — Ajike™a — A ike™ + Ajike™ ) = —V (A" + Aje k) (3.17.8)
Equations (3./7.6) and (3./7.7) enable us to express A, and A; interms of A, and A}
mv, mVv, i
A, = (l+;ﬁ—2)Al+—k-ﬁ_,ie 2ik A}
mv, mV (3.17.9)
= _—Dp2ika g +(l ___O)A-
A= ikh2)
We therefore have
A, A
=M (3.17.10)
Ay Al
where
mV, mV,
1+ ¢ +— —Zxka
ikh? ikh?
M = - v (3.17.11)
0821ka l — _0
kR ikh?

3.18. In this problem we study the possible energies (£ > 0) of a particle of mass m held in a 8-function peri-
odic potential (see Fig. 3-9). We define a one-dimensional potential by

Vi) = 2= 2 8(x - na) (3.18.1)

2ma

n= —oco
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Referring to Problem 3.7, part (a), for each of the regions Q, [na < x < (n+ 1) a), the stationary solu-

tion can be written in the form

0 (x) = Bt 4 C g hmnd (3.18.2)

A A”’”i A A

Fio 1.0
A .E. ar s

(@) Use Problem 3.17 to find the matrix T relating the regions Q_ , , and £2,:

Bn+l Bn
c.., =T c. (3.18.3)

Prove that T is not a singular matrix. (b) Since T is a nonsingular matrix, we can find a basis (b, b,) of
c? consisting of eigenvectors of the matrix 7. We write

/ BO\
LCoJ = B,b, +B,b, (3.184)
where B,, B, are complex numbers. Impose the condition that |Bn|2 + |Cn|2 does not diverge for n — teo

to obtain a restriction on the eigenvalues of 7. Express this restriction in terms of the possible energies E.

(@) We compare the definitions of ¢ (x) and ¢, , ,(x) according to (3./8.2) and the definition of ¢(x) in Problem
3.17, part (b). The analogy is depicted in Table 3-1.

Table 3-1
Problem 3.17 | Problem 3.18
A, B e itne
A C, "
A, Bn+le—ik(n+l]u
A) Cn+lerk(n+l)a

Also, the boundary between the two regions £, and Q_, | is set in x = (n + 1) @, whereas in Problem 3.17
the boundary condition is imposed at x = a. Using this analogy we have
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. A )
—ik{n+1)a _ -:lzna dtna .I_) =2ik(n+ l)a
B,.e = (‘ 2ka) C.e (Zka etineh
, (3.18.5)
. C eiktnta — -lfma( A ) 21k(n+l)a+C :lma(l +$‘)
n+i€ 8, \2ka/ \ Zka’s
We therefore have
Bn+l Bn
c.., =T c (3.186)
where
l)" 1kG 17\, —1ka
(‘ -m)e ~ka’
T2 A, (142 (3187
+*2ka® +Zka €
We see that T is not a singular matrix, since
S AN
detT = (1+2k )(lwm + 3ka) = 1 (3.18.8)

and therefore det T# 0.

Since T is a nonsingular matrix, we can find a basis (b, b,) of C? consisting of eigenvectors of T with corre-
sponding eigenvalues ot,and «,; these eigenvalues are the solutions of the cubic equation det(7T — (xl) =
By definition,
{Tb, = o, b,
3189
Th, = a,b, ( /
Using (3.18.4), we have (forn = 1,2,...)
Bn BO n n n
cl= T -7 c = T'(B,b,+B,by = B,a}b, +B,c5b, (3.18.10)
a n times 0
Consider
B |2 1
2 2 n
8./ +icf = |l - I 2 18,0c] b, (3.18.11)
| < 1; otherwise lim (|B | IC"iz) = 0. Similarly, we must have |o,| < 1. We apply a similar
consnderanon forn — —ea: "7
BO B—n
~ =T A for n=12... (3.18.12)
\“o/ \“ond
Hence
B'" n BO -n ’ Bl ~R, n Bz ~n, n
c | = T c, =T (B,b,+B,b,) = J‘[T (aib))] +'0?,[T (a3b,) ]
-n 1 2
B ~n n B —n n B B
= ST T )1+ (7T = b+ =5b; (3.18.13)
a, o, o o
Therefore,
2 2 B—n 2 2 2
lB—n| +|C—n[ = C 2 - ”bl“ (3,18.14)
- o

. 7, . )
so|oy| 2 I; otherwise |, (x)|” diverges for # — —o, and similarly we must have || 2 1. Summing our results,
we must have |°‘|| = |012| = 1, i.e., the eigenvalues of T must be of modulus 1. Therefore, we can write

det(T—e*°1) = 0 (3.18.15)
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3.19. Consider a particle of mass m held in a three-dimensional potential written in the form
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where ¢ is a real constant. So

[(1- 25 Jere -] [( 1+ 3 Jerta o] - (2;/\:1)2 =0

A rearrangement of (3.18.16) gives

2’ ( i;\.),-,m ( ik)_,—a o, 2io A =
(1+4k2a2]_[ l-m et + l+m e *]e +e —(Zka)z =0

or
A ; 2i
1- 2[(;05 (ka) + 37 sin (ka)}e"’ +e'* =90
Consider the real part of (3.78./8):
[ LI ] - 0
1 -2 cos(ka) +3ta sin(ka) |cos ¢+ cos(2¢) =
Using the relation cos (2¢) = 2 cos? ¢ — 1, we arrive at
A
cos¢ = cos(ka) + ta sin(ka)
Note that since & = «2mE/#?*,(3.18.20) is a constraint on the possible energies E:

A
cos (ka) + >ka sin (ka) | <1

We can represent this inequality schematically in the following manner, The function

1
flky = cos (ka) +2—}("-&sin (ka)

[CHAP. 3

(3.18.16)

(3.18.17)

(3.18.18)

(3.18.19)

(3.18.20)

(3.1821)

(3.18.22)

behaves for k — oo as cos(ka) approximately. The schematic behavior of f(k) is depicted in Fig. 3-10.

fik)

permitied bands

+1 A

Fig. 3-10

We see that there are permitted bands of possible energies separated by domains where | (k)| 2 1,and therefore
the corresponding energy £ does not correspond to a possible state. For E — oo the forbidden bands become

very narrow, and the spectrum of the energy is almost continuous.

Vix, y, 2) = V(x) + U(y) + W(2)

(3.19.1)

Derive the stationary Schrodinger equation for this case, and use a separation of variables in order to
obtain three independent one-dimensional problems. Relate the energy of the three-dimensional state to
the effective energies of the one-dimensional problem.
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3.20.

3.21.

3.22.

In our case the stationary Schrédinger equation is
5
- 2—mV2\P(r) + (VD) + U) + W) ¥(r) = E¥(r) (3.19.2)

where W(r) is the stationary three-dimensional state and E is the energy of the state. We assume that ¥(r) can be
written in the form W(r) = ¢C)x(y)y(z), so substituting in (3.19.2) gives

dZ
2,,,[( - )Jx(y)\v()w(x)( M]w(z)w( )x(y)[ v )ﬂ

+ V() + U + WD o)1 (0 W(2) = EG) X y(z) (3.19.3)
Dividing (3.19.4) by ¥(r) and separating the x-dependent part, we get

221 d2¢(x) ﬁi _l_dzx(y) LdZW(Z)
Ime® g O = E U VO -0 36 gy TV gt

(3.19.4)

The left-hand side of (3.79.4) is a function of x only, while the right-hand side is a function of y and z, but does not
depend on x. Therefore, both sides cannot depend on x; thus they equal a constant, which we will denote by £ . We
have

7 o)

“m P + V(@0)dx) = E $(x) (3.19.5)

We see that ¢(x) is governed by the equation describing a particle of mass m held in the one-dimensional potential
V(x). Returning to (3.1/9.4), we can write

51 dy0) [ 21 Py (z)}

“2mx0) dy? +U0) = Wiz) - 2my(z) g2 (3.19.6)

In (3.19.6) the left-hand side depends only on y, while the right-hand side depends only on z. Again, both sides must
equal a constant, which we will denote by E,. We have

A 2x(y)

2m

+ U)X = EX0) (3.19.7)

Thus, %(y) is a stationary state of a fictitious particle held in the one-dimensional potential U(y). Finally, we have

7 v

T gt WOVE = EvE) (3.19.8)

where wesetE, = E-F — Ey. Hence, the three-dimensional wave function W(r) is divided into three parts. Each
part is governed by a one-dimensional Schrodinger equation. The energy of the three-dimensional state equals the
sum of energies corresponding to the three one-dimensional problems, E = E, + E + E_.

Supplementary Problems

Solve Problems 3.11 and 3.12 for the case of particles with energy 0 < E< V. Ans. R=1land T=0.

Consider a particle held in a one-dimensional complex potential V(x)(1 + i§) where V(x) is a real function and Eisa

h ( £V a\y*)an

real parameter. Use the Schrddinger equation to show that the probability current j = S y* % Yo d
1 FR ST TR W NN aeeMair co el £ tlas s ] Amemaioislen: asyosios aj : QE Zév(x)p e

in€ probabliily densiy p = W Salisty i€ corrécieda L,Ullullully Cquauuu 5_; *5 T (Hint: Lompare
with Problem 3.4.)

Consider a particle of mass m held in a one-dimensional infinite potential well:

v = {Vo 0<x<a (3.22.1)
) o0 otherwise
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3.23.

3.4,

3.25.

3.26.

3.27.
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Find the stationary states and the corresponding energies.
natn?
Ans. E = —2—2 +V, (n=1,2,3,...). The corresponding states are the same as in Problem 3.10.
ma

Consider an electron of energy 1 eV that encounters a potential barrier of width 1 A and of energy-height 2 eV. What
is the probability of the electron crossing the barrier? Repeat the same calculation for a proton.

Ans. Foran electron T = 0.78; for a proton T = 4 X 107",

(@) A particle of mass m and energy E > 0 encounters a potential well of width / and depth V

0 x<0
vio) = 1 VYo O<x<! (3.24.1)
0 I<x

Find the transmission coefficient. (Hint: Compare with Problem 3.14.) (b) For which values of / will the transmis-
sion be complete, if the particle is an electron of ¢nergy 1 eVand V) = 4 eV?
1

Ans. (@) T = 5
Vs, . [ 2m(E+V0)l}
L+ TE(E vy S %

(Y EPNL A, where n is an integer.

An electron is held in a finite square potential well of width 1 A. For which values of the well’s depth V, are there
exactly two possible bound stationary states for the electron?

n?h?
Ans. V,SV, <4V, whereV, = 5—2 = 37.6 eV.
ma

N
Consider the wave function y(x) = — o (@) Calculate the normalization constant N where o is a real constant.
. . , , 20 3
(b) Find the uncertainty Ax Ap (be careful in calculating Ap!). Ans. (@) N= X (byAx Ap = E

Consider a particle of energy E > 0 confined in the potential (Fig. 3-11)

oo x<-a
0 —a<x<-b
Vix) = Vo -b<x<bh (3.27.1)
0 b<x<a
oo a<x

Show that for a stationary state with a nonvanishing probability of finding the particle to the right of the barrier (i.e.,
at b < x < a), there is also a nonvanishing probability of finding it to the left of the barrier (i.e., —a < x <—b). Note:
For E <V, this is another example of the tunnel effect of Problem 3.15.

\4
| w0 |
i i
Yo
-a -b b a X

Fig. 3-11
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3.28. Consider a particle of mass m confined in a one-dimensional infinite potential well;
Vix) = {O O<x<.L (3.281)
o0 otherwise

L . 2 (nnx n2hin?
Suppose that the particle is in the stationary state, ¢,(x) = psim\ T of energy E, = 5 Calculate (a)

{(x) and (p); (b) {x%) and (p*);(c) Ax Ap. mL?”

L 1 | nthin? 1 1
Ans. (a){x) =3, (p) =0; (B (xH = L2(§_2n2n2]’ (% = g ; () AxAp = nnh E_znznz'

3.29. Consider a particle of mass m held in the potential

V(x) = -V, [8(x) +8(x - 1] (3.29.1)

where / is a constant. Find the bound states of the particles. Show that the energies are given by the relation
= 1-20) (3.29.2)
\ o/ ! ’

where E = —A*p%/2mand o = 2mV,/h>.



Chapter 4

The Foundations of Quantum Mechanics

4.1 INTRODUCTION

The State Space: In classical mechanics, the position of a particle is described by a vector having three
real number elements. Though an analogous description exists in quantum mechanics, there are many signifi-
cant differences. The state of a quantum mechanical system is described by an element of an abstract vector
space called the state space and denoted €. In Dirac notation, an element of this space is called a ket and is
denoted by the symbol | ).

Observables: In Chapter 2 the concept of a linear operator was introduced. The Hermitian operator is a
linear operator that is equal to its adjoint (see Section 4.6). A fundamental concept of quantum mechanics is the
observable. An observable is a Hermitian operator for which one can find an orthonormal basis of the state space
that consists of the eigenvectors of the operator. If the state space is finite-dimensional, then any Hermitian oper-
ator is an observable. In the Dirac notation, an operator is represented by a letter. Since the action of an operator
on a vector yields another vector, an expression of the form A|y) also represents a ket.

The Dual Space: Recall that a functionat is a mapping from a vector space to the complex field. The dual
space of the state space € consists of all linear functionals acting on €. It is designated by €*. In Dirac notation
an element of £* is called a bra, and is designated by the symbol { |. We can associate with any ket |$) of € an
element of £*, denoted by (9|. The action of a bra {y| on a ket [x) is expressed by juxtaposing the two symbols,
(yly). By definition, this expression is a complex number. (The terms bra and ker come from “bracket.”) The
correspondence between € and £* is closely related to the existence of a scalar product in €.

Scalar Product: The basic properties of the scalar product are summarized below:

I (¢1w) = (y|e)* (4.1)
I (WIR10, +250,) = Ay (W) +A,(0,]¥) (4.2)
ML )+ A0plw) = ATCO ) + As (00w (4.3)
% {wiy) is reai and positive; it is zero if and only if jy) = 0 (4.4)
Projector onto a Subspace of €:Let 19,), [9,), ..., [0, be m normalized pairwise orthogonal vectors;
@lo) = 8, Lj=1.2,...,m (4.5)

We denote by €, the subspace of € spanned by these n vectors. The projector into the subspace £ , is defined
by the linear operator

Po= D 100 (4.6)

i=1

Figure 4-1 presents a simple example of this concept. The set {0,), |9,), |d,} } is an orthonormal set of vectors.
The projection of an arbitrary vector |y) into the plane spanned by I¢,) and [0,) is given by P,ly) =
({0, 161} + ({0o1FD) [0 -

50
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163)

€1 &)
Ko, ¥Hid)

162) PyY)

Fig. 4-1

1$))

4.2 POSTULATES IN QUANTUM MECHANICS

Postulate I: The state of a physical system at time ¢, is defined by specifying a ket |y(¢,) ) belonging to
the state space €.
Postulate II: A measurable physical quantity A is described by an observable A acting on .

Measurement of Physical Quantities: The extent of validity of a physical theory is continuously investigated
by confronting results calculated by the theory with measurements obtained in experiments. In the context of
quantum mechanics the measurement of physical quantity involves three principal questions:

(a) What are the possible results in the measurement?
(b) What is the probability of obtaining each of the possible results?
(c) What is the state of the system after the measurement?

The answers to these questions in the context of quantum mechanics is found in the following three postulates.

Postulate III: The possible results in the measurement of a physical quantity are the eigenvalues of the
corresponding observable A.

We can now answer the second question for the case of a discrete spectrum. The generalization to the case
of a continuous spectrum is treated in Problem 4.2.

Postulate IV: Let A be a physical quantity with corresponding observable A. Suppose that the system is
in a normalized state |y), so {wiy) = 1. When A is measured, the probability P(a,) of obtaining the eigen-
value a, of A is

&n

Pa) =Y

i=1

Wiy (4.7)

where g, is the degeneracy of 4, and ]u:), lui), cee luﬁ') form an orthonormal basis of the subspace &, that
consists of eigenvectors of A with eigenvalues a,,.

In Problem 4.3 we introduce a different (though equivalent) formulation of postulate IV. The subspace €,
of the state space defined in postulate IV is also called the eigenspace associated with a . The following postu-
late describes the state of the system after a measurement.

Postulate V: If the measurement of a quantity A on a physical system in the state [y) gives the result a_,
immediately after the measurement, the state is given by the normalized projection of |y) onto the eigenspace

1
¢, associated with a_; that 1s, J:_—P ly), where P, is the projector onto € .
WIP ly) " "
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4.3 MEAN VALUE AND ROOT-MEAN-SQUARE DEVIATION

Consider a state described by a normalized ket, {y]y) = 1. The mean value of an observable A in the state
ly) is defined by

(A)y = (VlAly) (4.8)

The mean value of an observable has a clear physical meaning. Suppose the physical quantity represented
by the operator A is measured a large number of times when the system is in the state |y). Then (A)w
expresses the average of the results of the measurements (that is, the sum of each result multiplied by the
probability of obtaining it). The derivation of this property is given in Problem 4.5.

The rootr-mean-square deviation of the observable A is defined by

8= [(A)y-(A), (49)

The root-mean-square deviation has a direct physical interpretation. It characterizes the dispersion of the meas-
urement results about (A)‘p {(see Problem 4.6).

44 COMMUTING OBSERVABLES

Consider two operators, A and B. In general, the expressions AB and BA are not identical—multiplication
of operators 1s not commutative. An important concept in quantum mechanics is the commutator [A, B] of two
operators defined by

[A,B] = AB-BA (4.10)

Some useful properties of a commutator are given in Problems 4.7, 4.8, and 4.9. If [A, B] = 0,then A and B
are called commuting operators, Consider the following theorem.

Theorem: Observables A and B commute if and only if there exists a basis of eigenvalues common to both.

A set of observables A, B, C, . . . is called a complete set of commuting observables if all subpairs commute, and
there exists a unique orthonormal basis of common eigenvectors. The uniqueness is within a multiplicative
factor.

4.5 FUNCTION OF AN OPERATOR

Assume that in a certain domain the function F of variable x can be expanded in a power series in x;

F(x) = Zanx" (4.11)
n=0

The corresponding function of the operator A is the operator F(A) defined by a series that has the same coeffi-
cients a,:

oo

F(A) = ZanA" (4.12)

n=10

4.6 HERMITIAN CONJUGATION
The adjoint (or conjugate) of an operator A is denoted by A". For every |¢) and |y) we have
(WlATIo) = (olA|y)* (4.13)

The basic properties of the adjoint of an operator are derived in Problems 4.10 and 4.11. An operator A is Her-
mitian if it is identical to its adjoint:

A is Hermitian < A = At (4.14)
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An inspection of Eq. (4.13) shows that in order to obtain the Hermitian (or the adjoint) of any expression, it
suffices to apply the following procedure:

I. Replace the constants by their complex conjugates.
Replace the kets by the bras associated with them.
Replace the bras with the kets associated with them.
Replace the operators by their adjoint operators.
Il. Reverse the order of the factors (the position of the constants is of no importance). For example,

A(olABlw) — 3* (wlB'A|0) (4.15)

4.7 DISCRETE AND CONTINUOUS STATE SPACES

A discrete set of kets {lu;), i = 1, 2, ...} is orthonormal if it satisfies the following relation:

(uu) = 8, (4.16)
For a continuous set of kets {|w_ 3 /, €& </}, the orthonormalization relation is written as
(wa1wa, = §(o-a) (4.17)

A set of kets constitutes a basis of the state space ¢ if every ket |y) belonging to € has a unique expansion on
these kets:

W) = 3,Cilu) (4.18)
i
and for the continuous case:
) = JC (a)jw,,) da. (4.19)

It can be proved that an orthonormal set of kets constitutes a basis if and only if it satisfies the closure relation
(see Problems 4.13 and 4.14):

2 lu)ul = 1 (for the continuous case, Ilwa)(waf da = 1] (4.20)

where 1 denotes the identity operator in €. Using the notion of the projector onto the space spanned by the set
of kets, we can write these relations in an equivalent form:

P{u} =1 (orP{w,} = 1) (4.21)

4.8 REPRESENTATIONS

The validity of a physical theory is established by comparing experimentally obtained data with the data cal-
culated by theory. When a basis is chosen in the abstract state space, each ket, bra, and operator can be
characterized by specifying its coordinates for that basis. We say that the abstract object is represented by the
corresponding set of numbers. Using these numbers, the theory-prescribed calculations are performed. Choos-
ing a representation means choosing an orthonormal basis in the state space.

Representations of kets and bras: In a discrete basis { |u,) }, a ket |y) is represented by the set of numbers
C; = (u)y). These numbers can be arranged vertically to form a column matrix:

C,

(c) =i . (4.22)
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A bra (9| is represented by the sets of numbers b;k = (0|u;), which are the complex conjugates the com-
qunen,.gs of the ket |¢) associated with (¢|. These numbers can be arranged horizontally to form a row matrix,
(b, .b,,...). Inacontinuous basis {|w_)}, kets and bras are represented by a continuous infinity of numbers,
that is, by a function of o. A ket |y) is represented by the set of numbers C(@) = (w |y}, and a bra (9| is
represented by b*(at) = (¢|w,). Once a representation is chosen, we can use the components of the ket and the
bra to calculate their scalar product. In the discrete case,

(Oly) = z be,. |:in the continuous case, {(¢|y) = Jb*(a)C(a) do :l (4.23)

Representations of Operators: In a discrete basis {|u)}, an operator is represented by the numbers

A= (u,.lA|uj) (4.24)
These numbers can be arranged in a square matrix,
(A Ap Ay
Ay Ay Ay
[A,] = : (4.25)
Ay A Aij )

For a continuous basis { |w )}, we associate with A a continuous function of two variables:

(o, o) ={wlAlw ) (4.26)
As a consequence of (4.13),
(AT); = A% (4.27)
or
Ao, o) = A% (o, ) (4.28)

If A is Hermitian operator (At = A), we have A(a',a) = A* (o', o). (Note that for the discrete case
Ay = A’;,».) In particular, the diagonal elements of a Hermitian matrix are always real numbers.

Change of Representation: We provide a simple method to obtain the representation of a bra, ket, or
operator in a given basis when its representation in another basis is known. For simplicity, assume that we per-
form a transformation from one discrete orthonormat basis { Ju}} to another, {|v)}. Define the transformation
matrix;

S = {wv) (4.29)
The Hermitian conjugate of §,, is given by
(ST) ki T (S,'k) * = (vklui> (4.30)

To pass from the components of a ket |y) represented in one basis to another, one applies the relation
Gw) = D (SN et dv) (4.31)
i

or the inverse relation, (u|y) = 28 vy . For a bra (¢| we have

k

Ol = Y {0lu)S,, Oy = Y 0ly,) (59 (4.32)
i k
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Finally, the matrix elements of an operator A transform as

(vilAlv) = Z(S*)ki(ulelu,> St (WAl = ZSM@,‘IAlv,) (8T (4.33)

k!
i Lo

|7) - and |p) -representations: In Section 4.1 we noted that to every ket |¢) there corresponds a bra {¢l.
The converse is not necessarily true; there are bras with no corresponding kets. Nevertheless, in addition to the
vectors belonging to €, we shall use generalized kets whose norm is not finite. At the same time, however, the
scalar product of those kets with every ket is finite. The generalized kets do not represent physical states; they
serve to help us analyze and interpret physical states represented by kets belonging to €.
Consider the physical system of a single particle. Together with the state space of the system we introduce
another vector space, called the wave function space, denoted by F. This space consists of complex functions
of the coordinates (x, v, z) having the following properties:

{a) The functions y(r) are defined everywhere, continuous and infinitely differentiable.

(b) The integral j|‘l’(|‘)|2 dr must be finite; i.e., Wy(r) must be square integrable.

To every function w(r) belonging to F there corresponds a ket |y) belonging to €. Using the wave functions
¢(r) and y(r) corresponding to (¢| and |y}, we define the scalar product of {¢| and |y):

(¢|\|f) = IQ)*(r)w(r) d’r (4.34)

Consider two particular bases of F denoted { iru(r)} and { vpg(r) }. These bases are not composed of functions
belonging to F:

§, (1) = 3(r—ry) (4.35)
and
1 .
0 = (4.36)

To each @ro(r) we associate a generalized ket denoted by [r,), and similarly for qu(r) we associate a general-
ized ket |p,). The sets {|ry)} and { |py)} constitute orthonormal bases in €:

(rol 7} = 8(ry=ry) J-Ir())(rnl dr =1 (4.37)

where we also have the following relations:

(po| Po) = 8(py—Py) J-Ip(,)(pol dp =1 (4.38)

We obtain two representations in the state space of a (spinless) particle: the { |ry) }- and { |p,) }-representations.
The correspondence between the ket |y) and the wave function associated with it is given by

w(rg) = (rg|W) (4.39)

and

Y(py) = (py|W) (4.40)

where \Ii(p) is the Fourier transform of y(r). The value y(r)' of the wave function at the point r is the com-
ponent of the ket |y) on the basis vector |r) of the |r)-representation. Also, the value y(p) of the wave function
in the momentum space at p is the component of the ket |y} on the basis vector |p) of the |p)-representation .
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Exchanging between the |r)-representation and the |p)-representaion is accomplished analogously to the
case of continuous bases. Note that

1 ip-r
(r|p} = (p|r)* = e pr/ (4.41)
T
Now, we have
rly) =I<rlp> (ply) db (4.42)
and inversely,
(plw) = j(plrﬂrlw) dy (4.43)
Therefore, using (4.41), we obtain
VRN _ 1 . flp r/h PR X A A4
pir} = (2 ﬁ)3/2 J ¢ vip)ap (4.94)
and
— 1 —-ip-r
v(p) = Py J.e Py d¥ (4.45)

The Operators R and P: Let |y) be a ket belonging to the state space and let y(x, y,z) = (r|y) = y(r)
be its corresponding wave function. The three observables X, Y, Z are defined by their action in the

IrY-representation:
(LI .

(rlXlyy = x(r|y) (rlYly) = y{(r|y) (r|Zly) = z(r|y) (4.46)

The operator X acting on |y) yields the ket [y'), which corresponds to the wave function ' (x,y, 2),
= xy (x, ¥, z), and similarly for Y and Z. The operators X, ¥, and Z are considered to be the components of a vector
operator R, Similarly, the operators P, P, and P_are defined by their actionin the |p)-representation:

(p|PJ¥) = p.(p|W) (piP,Jw} = p,(p|¥ (p|P.|w) = p.(p|¥) (4.47)

P, Py, and P, are the components of the vector operator P. The observables R and P are of fundamental impor-
tance in quantum mechanics. Their commutation relations are called the canonical commutation relations:

[R.P) = ikd, [R,R] =0 (P.P] =0 (4.48)

Quantization Ruies: By quantization rules we mean the method for obtaining the quantum-mechanics
analog of a classical quantity. Consider a system of a single particle. The observables (X, Y, Z) are associated
with the coordinates (x, y, z) of the particle; the observables (P, P, P,y are associated with the momentum
(P Py P,). We shall often use the notation R for (X, Y, Z) and P for (P, P, P.)In classical mechanics, a phys-
ical quantity A related to a particle is expressed in terms of the particle’s position vector r and the momentum p.
To obtain the corresponding quantum-mechanics observable, replace r —» R and p — P. Since the expression
obtained is not always Hermitian, we apply a symmetrization between R and P to obtain a Hermitian operator.
In Problem 4.29 we demonstrate this method. Note that there exist quantum mechanical physical variables which
have no classical equivalent (as spin). These quantities are defined by the corresponding observables.

4.9 THE TIME EVOLUTION

In the previous sections we paid no attention to the time evolution of a system but rather considered a definite
static state. We shall now present methods for treating the time evolution of a system. Consider the following
postulate:
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Postulate VI: The time evolution of the state vector |y(s)) of a physical system is governed by the
Schridinger equation:

diy(t
iﬁ—hg,f,-l) = HOlw(®) (4.49)

where H(t) is the observable corresponding to the classical Hamiltonian of the system.

Some important implications of the Schrédinger equation must be noted:

{a) Since the Schrédinger equation is a first-order differential equation in ¢, it follows that if an initial state
Iw(z,)) is given, the state (y(7)) is determined; therefore, the time evolution is deterministic. Note that inde-
terminacy appears only when a physical quantity is measured.

(b) Let |y (1)) and |y,(1)) be two different solutions of the Schrodinger equation. If the initial state is
(o) = ajly () + a, (lw,(2,)), where a; and a; are complex numbers, then at time ¢ the system is in
the state [y(1)) = a,ly, (D) + a,|y,(1)).

(¢) Attime r, the norm of the state vector remains constant:

T{vOlv) = 0 (4.50)

This means that the total probability of finding the particle is conserved (see Problem 4.34).

Time Evolution for a Conservative System: A physical system is conservative if its Hamiltonian does
not depend explicitly on time. In classical mechanics, the most important consequence of such an observation
is the conservation of energy. Similarly, in quantum mechanics, a conservative system possesses important
properties. Most of the problems in this book concern conservative systems.

The time evolution of a conservative system can be found rather simply. Suppose the Hamiltonian H does
not depend explicitly on time. The time evolution of the system that was initially in the state ly(z,)) is found

using the following procedure:

(a) Expand |y(ty)) in the basis of eigenvectors of H:
h(ep)) = ZZ 8, (1) 16, (4.51)

where a,,(1) = (9, (|wlte)- Bty
n 0

(b) To obtain |y(¢)) for ¢ > t,, multiply each coefficient a,,(t,) by e
H associated with the state |9, ,):

where E, is the eigenvalue of

WY = Y 2, (1) e BT g, ) (4.52)
n k

This procedure can be generalized to the case of the continuous spectrum of H. So,

() = ZIak (E, 1) e 70 M6, ) dE (4.53)
k

The eigenstates of H are called stationary states.

Time Evolution of the Mean Value: Let |y(r)) be the normalized ket describing the time evolution of a
physical system. The time evolution of the mean value of an observable A is governed by the equation

1 dA
LA A HOD (D) (454

If A does not depend explicitly on time, we have

1
L) - A HOD (4.55)
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By definition, a constant of motion is an observable A that does not depend explicitly on time and commutes
with the Hamiltonian H. In this case,
d{a) _

0 (4.56)
di

4.10 UNCERTAINTY RELATIONS

As we have seen in previous sections, the position or momentum of a particle in quantum mechanics is not
characterized by a single number but rather by a continuous function. By the uncertainty of the position (or
momentum) of a particle, we mean the degree of dispersion of the wave function relative to a central value. This
quantity can be given a rigorous definition; however, that is beyond the scope of this volume.

The Heisenberg uncertainty relations give a lower limit for the product of the uncertainties of the position
and the momentum of a particle:

Ax Ap > h/2 Ay Ap, 2 /2 Az Ap.>h/2 (4.57)

For the case of a conservative system, there is also a relation between the uncertainty of time At at which the
system evolves to an appreciable extent, and the uncertainty of energy AE:

*AtAE>h (4.58)

This relation is distinguished from the Heisenberg uncertainty relations by the fact that ¢ is the only parameter
without a corresponding observable.

4.11 THE SCHRODINGER AND HEISENBERG PICTURES

In the formalism described in the previous sections we considered the time-independent operators that cor-
respond to the observables of the system. The time evolution is entirely contained in the state vector |y(¢)). This
approach is called the Schrddinger picture. Nevertheless, since the physical predictions in quantum mechanics
are expressed by scalar products of bras and kets of matrix elements of operators, it is possible to introduce a
different formalism for the time evolution. This formalism is called the Heisenberg picture. In this formalism,
the state of the system is described by a ket that does not vary over time, |y (9)) = |y(ty)). The observables

corresponding to physical quantities evolve over time as
A = U (1,10 A U1, 1) (4.59)
where A is the observable in the Schridinger picture and

—iH (t- r(,)}

Ul t,) = exp[ 7 (4.60)

The operator U(1, 1,,) is called the evolution operator, and is a unitary operator. Note that this operator describes
the time evolution of the state vector in the Schrédinger picture:

|‘V\(’)> = Uy, f(]) le(r[])) (4.61)

Solved Problems

4.1, Let |y} and |y,) be two orthogonal normalized states of a physical system:
(Wilwa) = 0 and  (yfwp) = (uyyy) =1 (4.1.1)

and let A be an observable of the system. Consider a nondegenerate eigenvalue of Azdenoted by o, to
which th% normalized state |0,) corresponds. We define P () = \(¢n|\u1)’ and P,(c,) =
|(¢nt\u2)\ . (@) What is the interpretation of P, (o) and P,(ct,)? (b) A given particle is in the state
3y, — 4ily,). What is the probability of getting & when A is measured?
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4.2.

4.3.

4.4.

(a) According to the postulates of quantum mechanics, P, (o, ) is the probability of obtaining ¢, when A is meas-
ured, while the system is in the state |y,). The same is the case with P,(a,) in the state |y,).
(b) The normalized state of the particle is

. 31y, — dily,) 3wy —dilyy) L Bl — 4t (4.1.2)
RN T e e v e s Y S TR R i

Using the postulates of quantum mechanics (see Summary of Theory, Section 4.2), the probability of measur-

ing o, is

P, = (0w = 35[300,)w) - 4i(0, wo)]

1
= 55300, ]w)) = 4140, [w2)) (340, [w)* +4i(0,|w)")
1 2
= 55 1910, W[ + 16]C0, W2 + 1200, w,) {0, |w2)* = 120 (0, |w2) (0, w,)*]

1
= 55 {9P (@) + 16P,(ar,) + 2R[12i(0, |w,) (0, |w,)*]} (4.1.3)

Consider postulate IV introduced in the Summary of Theory, Section 4.2, and generalize for the case of
a continuous spectrum.

Consider a physical observable A. Suppose that the system is in a normalized state |y); {(y|y} = 1.Let Ivg)
form an orthonormal basis of the state space consisting of eigenvectors of A:

ARy = aphy (4.2.1)

The index P distinguishes between eigenvectors corresponding to the same degenerate eigenvalue o of A. This
index can be either discrete or continuous, and we assume that it is continuous and varies in the domain 8(a). Since
the spectrum of A is continuous, it is meaningless to speak about the probability of obtaining an eigenvalue &. Alter-
natively, we should speak about the differential probability dP(0) of obtaining a result between o and o + do, An
analogy to postulate IV for the discrete case, we then have

Blun|?
dP(a) = J.’<‘“|“’>‘ B o (422)
B(o)

Consider postulate IV for the case of a discrete spectrum. Show that an equivalent form for the proba-
bility of obtaining the eigenvalue a, of the operator A is

P(a,) = (WP%, P,Iw) (4.3.1)
where P is the projector onto the eigensubspace of A associated with a,,.

Assume that |u}), qu,), ...,and |u€7 ) form an orthonormal basis of the eigensubspace associated with a,. By
definition,

&£

P, = 2|u,';)<u,';| (4.3.2)
1=1
So,
8 L £, R,, &,
PP = 3 Y () = Y Y ulaiws, = Y [ v (433)
LA ] MHIFHI ﬁl:Hl 2 jsull I 1

Therefore, the two formulations are equivalent.

Consider two kets |y) and fy') such that y') = e'®|y) where 8 is a real number. (a) Prove that if |y) is
normalized, so 1s [y'). (b) Demonstrate that the predicted probabilities for an arbitrary measurement are
the same for |y) and |y'); therefore, |y) and ') represent the same physical state.
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4.5.

4.6.
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(a) We assume that |y) is normalized, or {y|y) = 1. Then
(W) = (yle®e®ly) = iy = 1 (44.1)

() According to postulate IV (see Sumrnzary of Theory, Section 4.2}, the probabilities predicted for a measurement
depend on terms of the form |(u [y)| or \(u qu)l We have

)| = ingy lwy® = euiipde oGy =

Therefore, the predicted probabilities for the states |y) and |y} are the same.

(44.2)

Consider a large number of measurements of an observable performed on the system. Show that the
mean value of an observable expresses the average of the results. Assume that the spectrum of the oper-
ator consists of both a discrete and a continuous part, but for simplicity assume it to be nondegenerate.

Consider first an eigenvalue a, belonging to the discrete part of the spectrum. From a quantity of N measure-
ments of A (the system being in the normalized state |y)) the eigenvalue a, will be obtained N(a,) times with

N(a,)
( N )n—ne“; (a,) (4

2] E Y
r JLy

where P(a,) is the probability of obtaining a, in a measurement. Similarly, if d¥(a) expresses the number of
experiments that yield a result between & and @ + do in the continuous part of the spectrum, we have

dN(a)
N e dP (o) (452)
The average of the resuits of the N measurements is the sum of the values divided by N. It is therefore equal to
1 1
Average (N =ﬁ2an N(a,) +ﬁja dN(o) (45.3)
For N — <o, we obtain
Average (N — o0) = zan Pla,) + J'Ot dP(o) (4.54)

n

Suppose now that |u,) forn = 1,2, ..., together with |[v_), where o is a continuous index, form an orthonormal
basis of the state space consisting of eigenvalues of A:

Alu,) = a,lu,) Alv,) = atfv,) (4.5.5)

The closure relation of this basis is
zlunxunl + J-Ivu><vu| do.= 1 (4.5.6)
n

So, using (4.5.4) we arrive at

Average (V=) = )" a e, + f af(ylvg)|” dot = Zan(wlun)(unlw)+Ja(wlva)<valw) do (45.7)

n n

Using (4.5.5) we obtain

Average (N — o0) = 2(\p|A|un)(un|\u) + J'(W|A|Vu)("&|1l’) do. = (ylA [Ziun)(unl + J'Iva)(val da} W) {4.5.8)

n

Substituting the closure relation we finally get

Average (N — o) = {ylA|y) (4.5.9)

Consider another formulation for the root-mean-square deviation of the operator A (in the normalized

state |y)):
= J{(A-(AD)D) (4.6.1)
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(a) Show that this definition is equivalent to that given in (4.9). (b) Use the formulation (4.6.1) to inter-
pret the term root-mean-square deviation.

(a) By the given definition we have

(@@= = wla-ayly (462)
Note that in this equation the term (A) is actually a shortened form of {A) 1, where 1 isthe tdentity operator;
{A) is a scalar. Hence,
(vl (a - ap’ley = (ol @®- 204+ )y
Using the known definition of mean value, we have
(A7) = 2(A)(A) + (A)’

So the two definitions coincide.

(b) The root-mean-square deviation expresses the average of the square of the deviations of A from its mean value
(A). It therefore characterizes the dispersion of the measurement results about {A). For example, if the spec-
trum of A is continuous and the probability has a Gaussian shape, then {A) characterizes the peak of the curve
(the value of maximai probability), and AA characterizes the width of the Gaussian curve.

(wla’lwy - 2¢a) (wlAl) + (A (wlw)  (4.6.3)

(A% - Ay (4.64)

4.7.  Prove that for the operators A, B, and C, the following identities are valid:
(a) [ByA] = —[A,B]
(b [A+8B,C] = [A,C] +[8,C]
(c) [A,BC] = [A,B]C+B[A, (]

(a) By definition,
(B,A] = BA-AB = —(AB - BA) = —[A, B] (4.7.1)
(b) By definition,
[A+B,C] = (A+B)C-C(A+B) = AC+BC-CA-(CB
= (AC~-CA) + (BC-CB) = [A,C] + [B, (] (4.7.2)
(c) We write
[A,BC)} = A(BC) - (BCYA = (ABC-BAC) + (BAC—-BCA) = [A,B)JC+B{A,C] (4.7.3)

4.8. Suppose the operators A and B clommute with their commutator, i.e.,[B, [A,B]] = [A, [A,B]] = 0.
"

Show that (@) [A, B"] = nB" '[A,B];(b)[A", B] = nA""'[A, B].

(a) Consider the following procedure:
(A,B") = AB"+B"A = ABB" "' —BAB" ' +B(AB)B" ' -B(BA)B" ’+ - +B"'AB_B""'BA

= (A,B}B" ' +B[A,BI1B" ' +...+B" ' [A,B]

Using the fact that B commutes with [A, B], we obtain wey
(A,B"] =B '[4,B] +B" '[A,B] +---+B""'[A,B] = nB""'[A, B] 4.8.2)

(b) According to Problem 4.7, part (a), [A", B] = — (B, A"]. Using part (a) above, we obtain
[A" B] = -nA""'[B,A] = nA" '[A, B] (4.8.3)

49. Consider the operators A and B presented in Problem 4.8. Prove that (a) for every analytic function F(x)

we have [A, F(B)] = [A,B]F(B), where F'(x) denotes the derivative of F(x). (b) etef =
A+B_[A B]/2
€ € .

(a) First we prove using induction that forevery n = 1,2, ... we have
(A, B"] = n[A,B]B"" (4.9.1)
Proof: For n = 1, (4.9.1) is clearly true. Suppose that this equation is verified for ». Then, using part (c) in

Problem 4.7 for n + 1, we have

(A,B"*"] = [A,BB"] = [A,B]B"+B[A,B"] = [A,B]B" +Bn[A B]B""' 4.92)
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B and [A, B] commute, so we finailly have
[A,B""'] = [A,B]B"+n[A BB = (n+1) [A,B]B" (4.9.3)

Equation (4.9.7) is therefore established. Consider now the expansion of F(x) in a power series,F (x) =
Zanx” . Using (4.9.1) we obtain

[A, F(B)] = [A,Za,ﬁ'} = Za" [A,B"] = [A,B]ZnanB"‘] (4.94)

n

The power series expansion of the derivative of F(x) is F'(x) = menx”‘ I. Therefore, by inspection we
can conclude that n
(A, F(B)} = [A,BIF'(B) (4.9.5)
(by Consider an operator F(s) depending on the real parameter s:
F(s) = eYef7 (4.9.6)

The derivative of F with respect to s is

d d
(:1}; (ds A‘)eﬂs_*_e/h(aeﬂs) = AeAs 8\+eA:Be
= A" el 4 eV Be™M e et = (A + e Be ) F(s) (4.9.7)
Using part (a) we can write
[e?,B] = —|B,e*] = —s[B, Al e** = s[A, Ble™ (4.9.8)

Therefore, e*B = Be® +s[A, Bl ¢” and e**Be™* = B + s [A, B]. Substituting in (4.9.7) we obtain

dF

I = (A+B+s[AB])F(s) (4.9.9)

Since A + B and [A, B] commute, we can integrate this differentiai equation. This yields
F(s) = F(0)e!** P v 1481572 (4.9.10)

Setting s = 0 we obtain F(0) = ¢* 2% = 1.1 = 1. Finaliy, substituting F(0) and 5 = 1in (4.9.10), we
obtain efel = gAtBeld.B1/2

Let (y] be the corresponding bra of the ket hy). We designate by |y") the result of the action of the oper-
ator A on |y), so [y') = A|y). Let {y| be the bra corresponding to [y). Prove that
. t
(¥l = (ylA (4.10.1)

Recall the basic definition of a bra as a functional acting on the state space. The two functionals
{y'| and (w|A are identical if their action on an arbitrary ket |¢) yields the same result; i.e., we have to show that

(vl = ¢la'ley (4.102)
Now, using Eq. (4./3) we have
(wlaTloy = (olalyp* = (oy* (4.10.3)
and according to the basic property of the scalar product [see Eq. (4.1)], we have
(wla'ley = (v'loy (4.104)

Derive the followmg properties of the adjoqutofan operator: (a)(A ) = A;(b)(lA)T = K*Af,where

1 io n ~reeee eabhame £ A 1 DA - A n AN A DN EDT?
I\-lbdbUllplC}\[lulllUCl CjitA+D) = A +D \u} \AD) =

First, recall that two operators are identical if their matrix elements in a basis of the state space are the same.
Therefore, if for arbitrary |¢) and |y) we have {(¢|A |w) = (§|4,|y), then A, and A, are identical. In the fol-
lowing derivations we also use some basic properties of conjugation of complex numbers, given in Chapter 2.

{a) Using (4./3) we have
(wlah'ley = cola’i® (4.11.1)
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and using (4./3) again, we have
0la’lyy = (ylalo)* (4.11.2)
Therefore,
(wlah'ley = cola’lwy* = (Cylaloynre = (ylalo) (4.113)
(b) We write
ol (a)ley = oAl = [R(olAlw]* = A*Colalp® = A*(ylalley =l a%aley  @1r9)
(¢) We write
(wl (A+8)]0) = (0l(A+B)wy* = [(GlAlw)+ (9lBlw)]*
= (olalyy* + (01Bly)* = (ylaTlo) + (wlB'ley = yla'+8Y]ey  @115)
(d) Letus define |x) = Bly). Using the results of Problem 4.10, we have (x| = (W|BT. Now,
(yl (48)|oy = (0lABlw* = (@laln* = (xl4le) = (wlB'a'loy (4.11.6)
4.12. Consider a Hermitian operator A that has the property A~ = 1. Showthat A = 1.
First we find the possibie eigenvalues of A. Suppose Ay} = aly), so we have
) = A’y = A% (afy)) = ad’ly) = Ay = @) (4.12.1)
Therefore, o® = 1. The possible values of o are then
a=—%+“/7§i, -%—"/;;, 1 (4.12.2)
fAisa = 1. We can choose

Pl ClgCs

Since A is Hermitian its Fmpn\mhmc are real; therefore, the only nncmhIF eigenvalue

an orthonormal basis of the state space consisting of eigenvalues of A, so Alu,
{4.12.3)

expanded as
19 Z]u) [ or ) = JA|u.‘,) ds if the basis has a continuous mdex]

(4.12.4)

Finally, |
AlDY = A Y luy = > Alu) = ) lu) = 1oy

which implies A = 1.
i =1,2, ...} constitutes a basis, then it follows that
(4.13.1)

4.13. Prove that if an orthonormal discrete set of kets {|u)

3 s = 1

Let |y) be an arbitrary ket belonging to the state space. Since {|u )} is a basis, there exists, by definition,

-

N
[0
Ly
3]
—

unique expansion fy) ZC :|1,). We use the orthonormalization relation (4./6) to obtain

D)

t

,u-l"'\
(| W)

I W W
LLI\MJ ul LJ
J J

(4.13.3)

So,
W) = D Clu) = D (W) = [Zlu,)(ail} v
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Note that since {u ,.Iq!) is a scalar we could change the place of this expression. We see that for any ket |y) the action

of the operator P({|u)}) = Z!u,-)(uil on that ket yields the same ket |y). Therefore, it is, by definition, the iden-

tity operator, P({lu)}) = 1.

Show that if the closure relation is valid for an orthonormal continuous set {|w_)}, then this set consti-
tutes a basis.

Let [y) be an arbitrary ket belonging to the state space. Using the closure relation we have

) = 1) = Ilwu)<wu|w> dot (4.14.1)

Defining C(r) =(w,|y)we have y) = IC(C(.)lwu) do.. We see that any ket |y) has an expansion on the |w,). To

show that this expansion is unique we assume that we have two expansions:
hy) = J-cumwu) dot ly) = IC'(“’ lw,) dot (4.142)
and subtracting we obtain
j[C(a)—C'(Ot)] wy do = 0 (4.14.3)

Applying {w_| on this ket, j (Clo)-C' ()] (wa,|wu) do. = 0 and using the orthonormalization relation we obtain
P
J [C(o)-C'()] d(' -y do = 0 (4.14.4)

Equation (4./4.4) is valid only if C(o} -C'(e') = 0. Therefore, for any o' we have C(o') = C’("), and the expan-
sion of any ket {y) on {|w )} is unique.

),

Suppose that in a certain basis { |} ] the operators A and B are reprgsented by the matrices (A, ;yand (B
respectively; the ket [y) is represented by c,; and the bra (¢| by b, . (a) Obtain the matrix representation
of the operator AB. (b) Find the representation of the ket A|y). (¢) Obtain an expression for the scalar
(0|A|y) in terms of the various representations.

(a) Consider the matrix element of AB;

(4B), = (uJABluy = (u|alB(u) (4.15.1)
Using the closure relation we obtain
(AB), = 3 (ulAlu) (wlBlu) = Y A8, (4.152)
k k

(b) By definition, the ket A|y) is represented by the numbers ¢ = {u,|A|y). Using the closure relation between
A and |y), we can write

¢ = ufaly) = Y GwlAl) (wfw) = Y A, (4.153)
j i
and in a matrix form,
¢ Ay Ay €
A

{4.154)
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(¢) We write

(BlAI) = ) (01 (wlAle) Cuw) = Y Br Ay, (4.15.5)

0 i)

or in a matrix form,

A” AIZ...AU... C]
A2l A22 ,
(OlAlyy = (bFb¥ ... B . )| . (4.15.6)
Ay Ay Ay .
Suppose that |¢,),where n = 1, 2, . .., form an orthonormal basis for the state space of a physical sys-

tem. Let A be an operator with matrix elements A,, = (9,[Al¢,). Show that the operator A can be

written as
WIILIl ds

A= ) A0, (4.16.1)

m,n=1

Recall that two operators are identical if and only if their matrix elements in a certain basis are identical. We
write, therefore, the matrix elements of the expression in (4./6.1) as

| D A0 )O1110) = Y, (0[0,(0,JA10,)(0,]0

moa=1 mon =1

o0

8t (0,1A10,08,, = (0,14l (4.162)
=1

mon

where we used the orthonormalization relations {¢;|¢) = J,;.

Consider a two-dimensional physical system. The kets [y,)> and |y,) form an orthonormal basis of the
state space. We define a new basis |¢,) and |¢,) by

1 1

= —= (W) +1v,) = —= (W) = lv,) 171
I‘D]) ﬁ 1 2 |¢2> A/i Y, Y, (4.17.1)
An operator P is represented in the |y )-basis by the matrix
1g
(a,'j) = [ J (4.17.2)
|

Find the representation of P in the basis |9, i.., find the matrix a;; = (0,|P|¢ ,>-

Method 1: We define the transformation matrix T;; = (\pf|(p}). We calculate its elements; for example,

1 1 1
Ty o= y|op = “ﬁ(\u.l(lw.HIwZ)) = :/-E(l +0) = N (4.17.3)
and
1 1 1
Ty = (W0 = Tz(wzl(l\m)—l\vz)) = Ti(o‘l) =% (4.17.4)

and so on. Then we find

111
T = 7_2.[ | -1] (4.17.5)
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2
1 1
The adjoint matrix is T ﬁ( J Using the closure relation ZN’,)(‘I’.I = 1, we obtain

1=l

au = (¢&|P|¢’1) = Z (¢k|W{><W{|P|Wj)<Wj|¢I> = L TluauTﬂ (4.17.6)

Qij=1 ni=1

We can accomplish the calculation in matrix form:

(&)__l_[llj{le}_l_[l1)_1(11J(I+EJ—EJ
TR e W) T 200 U rre-n+e

_1[ 2+2 0 ]_[l+a 0 ] (4.17.7)
200 2+2¢ 0 I-¢ o

Method 2: Observing that [¢) are actually eigenvectors of P,

el afee] g1 1) “
J

— = (1+Eg) 17.8)
Lel )JJ20 1) 42U 1+e ) N2U 1
and
1211} 1(14} 1[1]
—_ = — = (1-8\— 4.17.9
[sl)ﬁ(—l S\ -1 +e R ( )
Therefore,
Plo) = (1+8)19) Ploy) = (1-8€)l9y (4.17.10)
This implies that in the |¢,)-representation P is diagonal:
( l+e 0 \
) = 4.17.11
@) =| 5 e J ( )
Refer to Problem 4.17 and obtain the representation of the ket e’ [y,) in the |y )-basis.
Since P is diagonal in the basis, it is easier to work in this basis. Hence,
efl9) = €' "Fip) efl0,) = €' ~"loy) (4.18.1)
s0 we obtain
1 1
elel) =¢ (J_|¢ )+ f|¢2>) i +E|w])+el+£|w2)+e|—£|wl)_el-£|w2)]
1
=50 e T+ (e e T )] (4.18.2)
Therefore, ef|y,) is represented in the |y,) -basis as
myy=¢ €T 4.18.3
eN’])—z (,E_e{ ( )

(a) Show that the ket {r), where r = (x, y, ), is an eigenvector of the observable X with an eigenvalue
X. (b) Show that |p), where p = (p,, P, p.). is an eigenvector of P with an eigenvalue p,.

(a) Using 1he r-representation we have (F'[X|r) = x'(r'|r). Substituting the representation for (I'|r) we obtain

(riXiry =x8(r'-r) = x§(r-nr) (4.19.1)
where ' = (X, ¥, 2'). Therefore, we have (F'IX|r) = x{(r'|r). Since this holds for all ' we have
X = xir (4.19.2)

(b) Inthe p-representation we apply the same method as in part (@), so
(P'IPIP) = p(P'IP) = PSP -P) =p8(P-P) = pAP P (4.19.3)
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Therefore, P|p) = p |p)- Inconclusion, since analogous arguments can be applied to the y- and z-components,
ofe can write

[xir) = xiry (Pry = pir)
1Y|r> = yir) jP,.Ir> = p,Ir) (4.19.4)
ZIr) = z|r) P.Ir) = p_[r)

f
4.20. (a) Prove that {r{P|y) = ?V(rW). (b) Write an expression for {(¢|p,|y) using the wave functions
corresponding to |¢) and |y).

(a) Consider, for example, the x-component (the y- and z-components can be treated in a completely analogous
manner). We have

(r|P|w) = _[(l‘lp><plpxlw) d’p (4.20.1)

where we use the closure relation of the p-representation. Using Eqs. (4.47) and (4.47) in the Summary of The-
ory we obtain

1 _ -
P - — ip-r/h ‘ d3 4.20.2
(r|PJw) anhy”? J‘f p.yp)ap (4.202)
: L : » L)
This expression is the Fourier transform of p_rw(p) Wthh is 7, - We therefore have
(rlp Jwy = ,axw(r) (4.20.3)

(5 Suppose that ¢(r) and y(r) are the wave functions corresponding, respectively, to {¢) and [y); so
o(r) = (r|¢) y(r)y = (r|y) (4.20.4)

Using the closure relation of the r-representation together with the result of part (a) we obtain

fio
olp.v) = j<¢|.-><r|p ) dr = J¢, 3D 5, (420.5)

4.21. Showthat(a) [x,y] = 0:(B) [p.p,] = 05 [x,p] = ifi; (D) [xp)] = 0.

(@) Using the r-representation we obtain the action of [x, y] on an arbitrary ket |y):

(rl[x, ylw) = (rlxyly) = (rlyxdy) (4.21.1)
Using Eq. (4.46) in the Summary of Theory (Section 4.2), we arrive at (| [x, y]|¥) = x (r|yly) - y{r|xy).
So

(rlx, yly) = xy(riy) - yx(rly) = 0 (4.21.2)

Since this is valid for any (r} and arbitrary |y}, we have [x,y] = 0.
() We apply the same method in the p-representation:

(P|lpop,]|W) = (Plo.p,|W) - (Plp,p W)
= pAPp, W) —p,{Plp W) = P2 AP W) —p,p (PlY) =0 (4.21.3)
(c) We write {r|[x,p,]|w) = {r|xp|y) - (r[pxx|w) )

=

A0 fi o
(r|[xp ]|y = x(rip W) - ,ax<r|rlw> T35 Ar|w) — 755 (x(r|w) (4.214)

If y(r) is the wave function corresponding to [y}, we have

y(r) a(xw(r))} y(r) Jy(r)
[ dx ~  ox = i[x ox ~ W -xT5y }

Since the calculation is valid for all [y) and for any |r), we obtain [x, p ] = i%.

(rllxpl|w = = i) = ik(r|lyy (4.21.5)
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(d) Again applying the method used in part (c) we obtain

(r|[x,p, 1|y} = x{r|p|y) - TB_y (rlxly)
.1:2\

.I: A} & AT
= IXay‘l’(”‘? ay (xw(r)) = ?[_x Jy -x Jy ’J =0 (4.21.6)

o

Consider the following operators:

Oy (x) = x3w(x) O,y (x) =x ‘gix) (4.22.1)

Find the commutation relation [0 |, O,] .

Method 1: Substituting the operators O, and O, in the commutation relation we obtain

dy(x d
[0, 01 = 0,(0,y (1)) -0, (O (x)) = # x| - x2 [Py )]
H\u v r dun v
=x —xL3x Y (x) + 1= Y\ J = 3%y (x) (4.22.2)

Method 2: According to the action of x and p in the x-reprcsentation, we have O, =x* and O, = ixp/A.
Therefore,

i
[0,,0,] = 5[, xp] (4.22.3)
Using Problem 4.2, part (b), we arrive at
[0,,0,1= a1 xp] = o (531 p+x0xp) ) =320 (4.224)
Or equivalently, [0, 0,1y (x) = -3y ().

The angular momentum is defined by L. = r x p (for example, L, = yp,—zp ). Use the commutation
relations between r and p and the properties of the commutator denved in Problem 4.7 to find the fol-
lowing commutation relations: (a) {L , L ] » [L L] and [L L.J; (¢} [L L.].

(a) By definition,
[L,L)) = [yp,~2p, 20, ~2xp.1 = [yp,zp,] + [zp, 2p,] (4.23.1)

where we used the fact that yp, commutes with xp, and zp commutes with zp,. Using the relation derived
in Problem 4.1, part (¢), we then have

ylpo2lp +xlz plp, = ~ihyp, +ifixp, = iAL, (4.23.2)

(b) We write
[Lj, L]=LIL,L)+I[L,LIL =-ifiL L —ikL L, (4.23.3)

Similarly,
[LLL) = L L, L+ [L,LIL, = ihLL +ihL L, (4.23.4)

(¢) We write
[ ] - [Lx’ X] + [ Lx] + [ Iy X]
=0- zﬁL),LZ— zﬁL,Ly+ iﬁLzLy + zﬁLyLz =0 (4.23.5)

This result also holds for [Lz, Ly] and [Ll, L)

A particle is described by the wave function

i -1/4
Y(x) = (5) e’ (4.24.1)

Calculate Ax and Ap, and verify the uncertainty relation,
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4.25.

4.26.

We begin by considering the matrix element of x:

(0 = (wlxly) = J xly)|? dx = ﬁj xe dx = 0 (4.24.2)

2
~ax

where we used the fact that xe ** is an odd function. Also,

a —a.x a _ax a r(]/z 1
(X} = J ly)| dx = Aﬁ‘J e dx = 2[1;.[ 2o gy = 2«/;? zam) =5 (4.24.3)
—oo — 0

x = D - () = Jg (4.24.4)

In order to find Ap we calculate the wave function in the momentum representation:

S0

o 1 |. —1px/h 1 (E) Ud[ —ipu/h a2
yip) = 7= y{x)dx = == > e € dx
N2mhy NP4 J

! ( ) V4R 20 _.1_(___] )1/4 Y24’
-p/2al” _ ~ a
«/275.—7t [~ P = 7\ 7a e’ (4.24.5)

Since \Tl(p) is an odd function we obtain (p) = 0, and

2 Jr/2
fidmaz(1/ai?y””

2 11 »pz/aﬁz 2 - pak’ aﬁ2
(S _—_E—E pze dp = ﬁ? pe’ dp = == (4.24.6)

s0 we obtain

= S - (pp = Jz (4.24.7)

Eventually, the uncertainty relation will be Ax Ap = A/2.
This example demonstrates the basic nature of the uncertainty relation. If we choose a wave function with
smaller dispersion around the central position {.x), we obtain a higher dispersion of the momentum around {x).

A particle is in the state |y) and its wave function is y(r) = {r|y). (a) Find the mean value of
the operator A = [r)(r|. (b) Calculate (r|p|y). (¢) Find the mean value of the operator k, =
[Ir)rlp + pIr){r|]] /2m, where p is the momentum operator and m is the mass of the particle.

(a) By definition,

(A) = (ylaly) = (yinrly) = wrwr = [yl (4.25.1)
() The x-component of {r|p|w) equals
fidy(r)
(rlplw), = (rlpJw) = 755 (4.25.2)

I3 A
Therefore, {rip|y), = [ -l."Vw (r)] . Similarly for y and z, so we obtain {r|pjy) = 'I:V\y.
(¢) By definition, !

1
Wk |w) = 55 [y ird (rlply) + Qylp(r)(r|y) ]

2",[w*(r) Vy(r) +7 A 7 V() y(r) ] = ,,l, Re[w*(%wn (4.25.3)

This example demonstrates the basic nature of the uncertainty relation: If we choose a wave function with
smaller dispersion around the central position {.x), we get a higher dispersion of the momentum around {p).

The parity operator T is defined by
njr) = |-r) (4.26.1)
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(a) Let |[y) be an arbitrary ket with corresponding wave function y(r). Find the wavezfunction corre-
sponding to T|y). (b) Show that T is a Hermitian operator. (¢) Find the operator T . What are the
possible eigenvalues of T? (d) We define the operators

i i
p, =5(1+m p.=5l-m (4.26.2)
For an arbitrary ket [y) we also define
w.) = p.lw) ) = p W) (4.26.3)

Show that |y_) and |y _) are eigenvectors of TT. (¢) Prove that the wave functions corresponding to |y )
and {y_) are even and odd functions, respectively.

(a) We begin by considering the ket |y) = Jw(r)lr) d‘}, $0

mw=anmmu?=JWM4M? (4.26.4)
Changing the integration variable to I = —r, the wave function corresponding to TT|y) is
(r|1t|w) = Iw(—r')(r|r') d¥ = IS(r—r')w(w‘) d¥ = y(-r) (4.26.5)

(b) Using part (a) we have (rlnlw) = (-r|y). Therefore, (P = (-r|. On the other hand, takingfthe Hermitian
conjugate of (4.26.1) yields (r|TT = (-r|. Since this is valid for any (r] it follows that TT = T .
(¢) We have
K = ARR = M=) = [r) (4.26.6)

Since this is valid for any [r), we have n =1 Suppose that [¢) is an eigenvector of T with an €igenvalue
p, Tlo) = pl¢). So, on the one hand we have

ey = Ligy = 1) (4.26.7)
and, on the other hand, we have
TI0) = T(plo)) = pTie) = 710 (4.26.8)

Therefore, p? = 1. But since T is a Hermitian operator, its eigenvalues must be real. Therefore, the possible

eigenvalues are +1 and 1.
(d) We have

1 !
Ty, = Tp.dw) = 3L+ M) = 5+ 1) 1w (4.26.9)

Using part (¢) we arrive at

1
Ty, = 5T+ D = p,w) = v (4.26.10)

Hence, |,) is an eigenvector of T with an eigenvalue +1. Similarly, we can conclude that |\pc) is an eigen-
vector of 7T with eigenvalue -1.
(e) Using part (@) we have (r|7t| Vy,) = W, (-r). On the other hand, relying on part (d),

(rimlw,) = (rjw,) = w,(0) (4.26.11)
Therefore, y (-r) = y_ (+r),and y_ is an even function. Similarly, (r|1t]\u_) = y_(-r)and

(rlmtlyy = ~(rjy) = —y.(n) (4.26.12;
Therefore, W_(i) = —y_(i), and y_ is an odd function. Note that we can wriie any [y) as ) = [y,) + [y.).

n.
tained a method for separating a wave funciion into even and odd parts.

g

Thus we have o

4.27. Consider a one-dimensional physical system described by the Hamiltonian
2

-2
H = 2m+V()c) (4.27.1)
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4.28.

(a) Show that [H, x] = —ifhp/m. (b) For a stationary state find {p) (consider only square integrable
states).

(a) Considering the commutation relation,

1 | :
[Hox] = 5= 1pxl + [V@.x) = 5-2p(p.x] +0 = — (427.2)

m?
(b) In a stationary state we have H[y) = Aly), where A is the eigenvalue. Since H is a Hermitian operator, we
also have (ylH = Aly). Usmg part (a) we finally obtain

(p) = (ylply} = ﬁ (ylHx —xH|y) = ,z Z [yl - A Cyld ) (4.27.3)

Consider a free particle in one dimension whose wave function at r = 0 is given by

oo

y(x,0) = NJ

—oa

Ik )
&k o g (4.28.1)

where N is a normalization constant and g is a real number. In a measurement of the momentum at time
t, find the probability P(p, f) of getting a result between —p; and p,.

First note that the relation between the wave function of the particle y(x, 1) and its wave function in the
momentum representation y(p, f) is

)

yix, 1) = J—fLJ py/h \y(p 1y dp (4.28.2)
(This is a Fourier transform.) Substituting k = p/h in y(x, 0) we obtain
N ey, jpra
yx, 0) = 7 ¢ 0e dp (4.28.3)
Therefore,
- N A
W(p.0) = 7 Zmhe" M (4.28.4)

From the normalization condition of \|~I(p, 0) we can find the constant V:

o =

2 R
~ 2 2nN Anl s 2nN” REOY e 17
J lvp. 0| ap = : J e Mo dp = —=— [2(-7")e-””"l' In]=2nk“/\12=l (4.28.5)

—oo —o

e r% (4.28.6)

- l
yip,0) = ﬁ
0

The Hamiltonian of a free particle is H = p~/2m. The basis |p) of the state space consists of cigenvectors of H:

Hip) = _%;lp) = Em (4.28.7)

Note that for every p,  (p, 1) is actually the coefficient of |p} in the expansion of the state of the particle |y(?) ) in
the basis |p):

o0

r
(1)) = J y(p.t)|py dp (4.28.8)

where w(p 1) = {p|y;. The time evolution of I\y(r)) is described by

ly()) = J wip, 0y e py dp = J. <Apl/ bk,
- ik,

— ¢ 2er2mp

lp> dp (4.28.9)
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Or equivalently,

‘I’(P = P _ptsamh (4.28.10)
Jhk,
So finally we obtain
79 7] , Ig] ,
= - P -l 2 (rp 2p)
P(plr t) - J |‘I’ (P, t)l dp - hk(),[ exp{z(zmht - ﬁk() dp - ﬁ'kO exp %_ ﬁk() dP (42811)
N4 - 0

4,29, Consider a classical quantity fexpressed in terms of the dynamic variables r and p, so that f(r, p). Sup-
pose that in f(r, p) there appears a term of the form r - p. Using the quantization rules, find the quantum
mechanical operator corresponding to the term r - p.

Let the operator R correspond to the classical coordinate r, and the operator P correspond to the classical

PR T nt D I iocnt o [Tamitine amacatoe,
ll]UJllClllulll p INuULC l I.d.l N1 DiIvLa llCllllllldll UpcldlUl

(R-P) = (XP,+YP +ZP) = PX+PY+PZ=P.R (4.29.1)

In order to obtain the Hermitian operator corresponding to ¥ - p, we must perform a symmetrization of the operator

R.-P:
JR.P+(R-P)] = 5(R-P+P-R) (4.29.2)

As an exercise, prove that this operator is indeed a Hermitian operator.

4.30. Consider a physical system with a three-dimensional state space. An orthonormal basis of the state space
is chosen; in this basis the Hamiltonian is represented by the matrix

210
H=/1220 (4.30.1)
0 0 3
(a) What are the possible results when the energy of the system is measured? (b) A particle is in the state
i
1 .
|y}, represented in this basis as :/-"3' —i |. Find {(H), (HZ), and AH.

(a) The possible energies are the eigenvalues of H that are found by solving the equation det (H — kl) =0,or
2-A 1 0

| 2.4 0 = [2=M-11(3-1) = W -4h+3) (3-1) (4.30.2)
0 0 3-1
= G- (-1
Therefore, £, = land £, = 3. Note that £, is a nondegenerate eigenvalue where E, is degenerate, so a two-

dimensional subspace corresponds to it.
(b) Method 1: We write

210 ) | i i 5
(= =) 120 —i = 3(—t =0 - = g(l +1+3) = 3 (4.30.3)
003 i 3

Si-

(ylHly) = f
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4.31.

Also,
2
1 210 i
Hy = (yl#ly) = 3 i -b| 120 -
003 ]
L JLi) (4.304)
VN IR L U B 1
—3(—1 i -} 1260 —i —3(—1 i =) —i =3(l+l+9)=-3—
003 3i 9
and

5
aH = Jiy -y = -2 = 2—3“/2 (4.30.5)

Method 2: We define

(i) (03
u)) = ﬁt zJ ) = L?J (4.30.6)
Thus, [y) = «[ lu,) + [ fu,). Note that |u) and |u,) are eigenvectors of H:
210 i 1 i
Hu) =% 120 | i [=F| =i | =) =El) (4.30.7)
2 2 1 (R
£ 003 0 £ 0

Similarly, H|u,) qu)

fPrnn' Plnpn\ln ues of ” Sn
ala vaiues of f, SO W

cvb....n
[(u |+[(u2|) (A[|ul)+fiu2) E (ul|ul)+3E2(u2|u2) —g 1
Also,

2 [ p) 1 2, 1 1
(HY = (ylH ) = (ém,néw%( J;E,|ul)+f§E2|u2>)= §Ef+§E§=—3—l (4.30.9)

and AH = J(HY - (HY = 2.J2/3.

l,}. The eigenvectors Ju,) and |u,) are orthogonal since they correspond to dif-

5
3 (4.30.8)

Refer to Problem 4.30. Suppose that the energy of the system was measured and a value of E = 1 was
found. Subsequently we perform a measurement of a variable A described in the same basis by

{ \
500
A= 02 (4.31.1)
0-i2
(a) Find the possible results of A. (b) What are the probabilities of obtaining each of the results found in
part (a)?
(a) The possible results are the eigenvalues of A obtained by solving the secular equation
det(A-Al)y = 5-M -V 11 = 5G-1B-H (1-]) (4.31.2)

Therefore, a, = 1, a, = 3,and a, = 5.
(b) Theenergy £ = 1is anondegenerate eigenvalue of the Hamiltonian, so after the energy measurement the state
of the system is well defined by the eigenvector

1
|
— —| -1
Y ./5[ J (4.31.3)
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Now we can find the eigenvectors of A corresponding to each of the eigenvalues obtained in part (a). This can
be accomplished directly by solving the equation

((5)(2)(')]((1}—(1(0‘ 4.315)
S M

for each j. For example, for a, we have

S50 = o
B+iy=P (4.31.6)
—iBr2y=v
Therefore, o = 0. Choosing arbitrarily B = 1 we obtain y = i, so after normalization we get
0
€ = ! ( I ] 4.31.7)
= A ! (4.31.
\ i)
In the same manner we obtain the eigenvectors of A corresponding to a, and ay:
1| ° 1
= —| ; = — 4.31.8
&2 ﬁ i ég ﬁ 0 ( )
1 0
Finally, the probability P(a,) of a measurement yielding a is P(a) = |<§||‘l’)‘2- Thus,
| LY .
Py = =01 -i—=| -1| =511 = = (4.31.9)
Similarly, we obtain
12
1 . 1
Plap = /(0 i D -1 =3 (4.31.10)
0
and
1 Y2
1 1
P(a;) = 3/(1 0 0) -1 = 3 (4.31.11)

0

A particle of mass m is confined within an infinite one-dimensional well, between x = 0 and x= L.
The stationary states |¢,) of the particle correspond to the energies

e Hn?
2mL2

n

n=12... (4.32.1)

2 X
and to the wave functions ¢, (x) = «/% sin( T) Consider the case in which at time ¢+ = 0 the particle

is in the state [y (0)) = [[0,) +[0,)] /A2 . (@) Find the time-dependent |y (7) ). (b) Calculate the wave
function Y(x, 1).

(a) Since E, = ©h°/2mL’ and E, = 2n°h°/mL>, we have,

1 2 ! 1 Thes2mt? 1 hesmt’
IW(’)) - ﬁ[e—!£|!/h'¢l)+€—Jbzl/ﬁ|¢2)] - :\7—2—' [e—tn ht/2ml |¢l)+€2 he/mi |¢2)] (432.2)
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() The wave function y(x, ) is obtained by (x|y(s)); that is

I inh in*h
wix, 1) = {x|yn = j—il:(f\"bl) exp (—Zmth ] +{x|0,) exp [‘IZE’H
1 ittht | . [ mx l 2imthr | | 2mx
= ﬁexp [—m] Sin (T)+Eexp(——m?-J sin (T) (4.32.3)

4.33. Show that the norm of the state vector evolving from the Schrédinger equation remains constant.
Consider the Schrodinger equation:
;—ii\u(t» = %H(z)b\v(r» (4.33.1)
Taking the Hermitian conjugates of both sides of (4.73./) we obtain
C%(W(!)l = —%(\u(t)lH’(r) = ~i—l,:l(w(r)|H(f) (4.33.2)
since H(r) is an observable and it must therefore be a Hermitian operator. So we get

d diy(e diy 1 1
2wy = <%)]Iw(r)H(W)I]\Z—,» = [—g(W(r)IH(r)} Iw(r)>+<W(r)|[r,»,ﬂt)lw&))] =0 (4.333)

4.34. The Hamiltonian of a particle in a potential V(r) is

I 2
H = =P  +V(R) (4.34.1)
2m
(a) Write the Schrodinger equation in the r-representation. (b) Repeat part (@) in the p-representation.

(@) Consider the Schridinger equation:

d
ih Wy = Hiyay {4.34.2)
Projecting this equation into the r-basis, we obtain
d 1 2
ihg (rly@) = 2—m<r|P7|w(t)> +(r|[VR)lyy (4.34.3)
The wave function corresponding to [y(1)) is y(r, 1) = (r|y(r)). We also have
) A of & 8 & 2 g2 (4.344)
(rlP?yinyy = <r|(P\+P}-+P:)WU)> = —# PR R LR 51y = -V, ) .
AT dy =*
and we have {r{V(R)|y(1)) = V(ryy(r, r). Therefore,
0 g
gy, 0y = | =5V + V() |y, n (4.34.5)
(h) We begin by projecting the Schrédinger equation onto the p-basis:
d 1 2
g (Plyn) = 5 (B ) + (VR (o) (4.34.6)

The wave function in the momentum representation is defined by \Il(p, 1y = {p|w()}. So we have

Py = P (4.34.7)

In order to calculate the term {p|V(R)| (1)) in (4.34 6), we insert the closure relation in the p-basis between
V(R) and |y(1)}, and obtain

(pIVIR)w(n) = J (pIVIR)IPY (P [w(n)y dp' (4.34.8)
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4.38.

4.36.
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Using the closure relation in the r-basis we have

1 r ,
(pIVR)lp) = J‘<p|r><rIV<R)|p'> dr = Wje PR VR dr (4.34.9)
We also have
(rFlVR)|pY = V(r)¢r|p) = vime P (4.34.10)
So, using Eqs. (4.34.8) to (4.34.10) we see that
1 — w0 3. 43,
(pIVR)|y(ry) = WJ.V(P—P)W(PJ ydp (4.34.11)
where
_ 1 ro(p-p
Vip-p) = WJV(r)e" PP g3 (4.34.12)
Note that V(p) is the Fourier transform of V(r). Finally, we have
. aq’(p’ t) p2 - 1 iyt Ve ot )
Ao V(R A V(p-pP)w(p't)dp (4.34.13)

Show that the operator exp (—ilp /) describes a displacement of a distance / along the x-direction.

Consider the problem in the x-representation, We search for an operator A acting on a wave function y(x), with
Ay(x) = ylx=D (4.35.1)

Using the Taylor expansion, we can write
2

yx=1) = Wx) - Iy'(x) +%\V"(x) 4o — (4.35.2)
In the x-representation the momentum operator acts as p W(x) = — ihoy(x)/dx. Therefore,
Yix=0) = y(x) —;Tl[pX\V(X) +%(g)zpf Y(x) + -+ (_[j PoW(x) + -
ilp
= exp (—T“)w(x) (4.35.3)

Assume the validity of all the postulates given in the Summary of Theory except postulate II; i.e., we
introduce a system whose Hamiltonian is not Hermitian. Consider a system whose state space is two-

dimensional. Suppose |¢,) and |¢,) form an orthonormal basis of the state space and are eigenvectors

of the Hamiltonian with \,agenvalues E, = 5k and E, = (4 —i}#, respectively. (a) Suppose that at

time ¢ = O the system is in the state |¢,). What is the probablll[y of finding the system at time ¢ in the
state |¢,)? (b) Repeat part (@) for |0,). (¢) Interpret the results of parts (@) and (b).

(@) Using the postulates of quantum mechanics, the state vector at time ¢ is

() = e )y = ¢ i) (4.36.1)

The probability of finding the system in the state {¢,) at time ¢ is, then, P (1) = Ie‘5"|2 = 1.
(by In this case, we have

W) = 10,y = 410 (4.36.2)

- YV g 7 17, V1 L 1T}

The probability of finding the system in |§,) is P,(t) = |e b = e .

(c) By inspection, we see that the state |¢,) is unstable. The probability of finding the system in this state decreases
exponentially. This is not the case for the state |¢,) , which is stable and remains in the initial state permanently.
This means that the Hamiltonian is not a Hermitian, and therefore cannot represent rigorously an independent
physical system. Nevertheless, the system could have been a part of a larger system, and then, phenomenolog-
ically, the notion of complex energies proves to be useful for taking inio account the instability of states.
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4.37. Consider a particle in a stationary potential V{r). Show that

d(R) _(m d(p) _
= no—= = —(VV(R)) (4.37.1)
I and II are known as the Ehrenfest equations and are analogous to the classical Hamilton-Jacobi

equations.

We begin by considering the Hamiltonian of the system:
2

=P
H = ot V(R) {4.37.2)
Since the observables p and V(R) do not depend explicitly on time, we have, according to Eq. (4.55),
d(R) 1 1 p’
o = URAHD = E([R,ﬂ ) (4.37.3)
where we used the fact that R and V(R) commute. Using the canonical commutation relations we can obtain
2
p ih
[R, 2_r-n} = ) {4.37.4)
Hence, d{R)/dr = {p)/m. Also, using Eq. (4.55) for p and Problem 4.9,
d{p) 1 1 ] .
——f,? = ([P H]) = Z{[p. VIR)]) = Z{[-AVV(R)]) = ~(VV(R)) (4.37.5)

Compare with Problem 3.3,

4.38. Assume that in the Schrodinger picture all the operators are time-independent. (a) Work in the Heisen-
berg picture and derive an equation expressing the time evolution of an operator A, (?). (b) Show that
Eq. (4.55) is also valid in the Heisenberg picture.

(a) Inihe Schrodinger picture, combining the Schrodinger equation and Eq. (4.61), we have
L9 .
zﬁa—tU(t, Wty = HUG () () (4.38.1)

Since this is valid for any |y (1,)) we obtain AU, 1)/91 = H U(t, 1,). H, is a Hermitian operator, so we

dJ
also have —ih E)_tUr(’* ) = HjUt(t, t,). We differemiate Eq. (4.59) with respect 1o time and obtain

T < 5] [0 )
a zU (Lt |A U@ 1)+ U (L t)A, atU(t, 1) {4.38.2)
Substituting the time derivatives we artive at
dAH(t) 1 t | -
o =R WU igH A UG 1) + B (6 )AH U, 1) (4.38.3)

Since U(4, tO)U*(t, tp) is equal to the identity operator, we insert this product between A  and H and obtain
dA (1) 1 t t l t +
— =7 (Ut t)H U, 1)] (U (1, 1)A U, 1)] + T (U (1, t)A U, 1)) LU (6, t)H UG 1)) (4.384)

dA (1)
Using (4.59) we finally obrain i% y7E [A,(0), HyD].

(b) The mean value of an operator in the Heisenberg picture is

(AD) = {ylA 0|y (4.38.5)
On the right-hand side of (4.38.5), only A,(r) depends on time. Therefore,
d{A dA, (0
_Eit_) = Yy [ dt ] () (4.38.6)

We assume that A is time-independent in the Schrédinger equation, so using the result of part (a) we obtain

d<AH(’)> 1
a1 = ;z( [AH’ HH(f)]> (4387)




78

4.39.

4.40.

4.41.

THE FOUNDATIONS OF QUANTUM MECHANICS [CHAP. 4

In this problem we show that for a conservative system the greater the energy’s uncertainty, the faster
the time evolution. Consider a Hamiitonian with a continuous spectrum, and assume that the spectrum
is nondegenerate. Consider a state [y(¢,)) with an uncertainty energy A£ and show that if At is the time
interval at the end of which the system evolves to an appreciable extent, then

________________ , L1IEI

At AE=Hh {4.39.1)

A state [\(z,)) can be written in the form

(e, = Ja(E)I%) dE (4.39.2)

where [,) is an cigenstatc of H with an eigenvalue E. We define a state for which |0L(E)|2 has the form depicted in
Fig. 4-2.

la(E))2

Fig. 4-2

In this case AE represents the uncertainty of the energy of the system. Using (4.53), the state [\(z,)) evolves to

[P ¥ ol 4 30
Pg/ ar (4.07.0)

—:E(:frﬂ)/ﬁ
In order to estimate the time imterval during which the system evolves to an appreciable extent, we caiculate the

probability of finding the system in a state [y). This probability is
2

PO, 0 = [ vl* = (4.39.4)

J. oE)e " (x| 0p) dE

If AE is sufficiently small, we can neglect the variation of (| ¢} relative to the variation of a(E); therefore, replac-

ing (%|0z by <X|¢E“), we obtain
2

(4.39.5)

'[(I(E)E_‘E“_’”) /ﬁa,E

PO D= [(x10g,)|

Thus, Py, 1) is approximately the square of the moduius of the Fourier transform of a{F) and using the properties
of the Fourier ransform, the width Ar of P(y, r) is related to AE by

Ar
ZAE >1 (4.39.6)

where At is the time period during which there is an appreciable probability of finding the system in |y}, and there-
fore it can serve as an estimation of the time during which the system evolves to an appreciable extent.

Supplementary Problems

me

Consider the projector onto a subspace £, of € (see Section 4.1). Verify that P,i =P

Repeat Probiem 4.13 for the case of a continuous set of kets.
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4.42.

4.43.

4.4.

4.45,

4.46.

4.47.

4.48.

4.49.

4.50.

4.51.

Repeat Problem 4.14 for the case of a discrete set of a kets.

Consider the following four expressions (A is an operator):

SN Sacel AL L aie 3 P s:ial TAN At

'e \ PN F / 5/ A £I55Y Jaial A A ] Fleay At falaliin
) AYiAlg (Y g ALV RS ARVAN Ji UL A YO A9 UV) A @iAaly)

A\
(a) For each of the expressions, find whether it is a scalar, operator, ket, or bra. (b) Obtain the Hermitian conjugate
of each expressionn.

Ans.  (a) (i) scalar; (ii) bra; (iii) operator; (iv) ket. (&) (i) <¢lAf|w><¢>|\v> or {y|A|d)* (w|d)*;
(i) (w]0y*A" Iwd; (i) (wle)*yd(01AT; (iv) (lAlyy*(wiA'.

Derive the expression of the scalar product

(O]y) = z hC, and (O|y) = J-b*(OL)C(oc) dot (4.44.1)

in terms of components of the ket and the bra in a given representation. (Hint: Use the closure relations.)
Show that ¢2™*% and ¢'*”’* commute for every real number a. [Hint: Use Problem 4.9, part (b).]

Show that the trlansformation matrix between two orthonormal bases [Eq. (4.29)] is a unitary transformation, i.e.,
ss'=5's=1.

Derive Eqs. (4.31), (4.32), and (4.33) using the orthonormality and closure relations for the two bases

{lup} and {Ivy}.

Refer to Problem 4.28. (a) What is the form of the wave-packet at time ¢ = 07 (b) Calculate the product
1

P2k,
AxApat 1=0. Ans. (@) y(x0) = '\IT}:&—
oX

>, () Axap = hy 2.

Using the Schrodinger equation, derive Eq. (4.54).

Derive Eqgs. (4.52) and (4.53) of postulate VI. [Hint: First find the time evolution of an eigenvector of the Hamilto-
nian and then use property (b} of the Schridinger equation; see Section 4.9.]

Find the operator describing a shift of p, in the x-direction momentum. (Hint: Compare to Problem 4.36.)

ipax/h
Ans. 0",



Chapter 5

Harmonic Oscillator

5.1 INTRODUCTION

In this chapter we consider a particle moving under the harmonic oscillator potential,

1
V(x) = ikx2 (k = constant) (5.1)

The general differential equation for the oscillator potential can be solved using a technique that is frequently
exploited in solving quantum mechanics problems. Many problems in physics can be reduced to a harmonic
oscillator with appropriate conditions. In classical mechanics, for example, in expanding potentials around a
classical equilibrinm point, to the second order, we obtain the harmonic potential kx*/2.

Schrodinger Equation: The Hamiltonian for the one-dimensional harmonic oscillator is

pz P
H = 2_n_1+_2—

where k = mw?, The variables @ and m are, respectively, the angular frequency and the mass of the oscillator.
We have

(5.2)

2 2 2 2
P mwx A d omor
H=3—+—7 = =5o TS+t 5 X (5.3)
It L L’lldx‘ —

Thus the stationary Schrédinger equation is

ﬁa’zw(x) may

2
“Im A tTyx Y(x) = Eyx) (54)
The eigenfunctions that are the solutions of the Schrédinger equation are
[ \I74 ] X\ Ll
(x =(—-—) —H(—)e 55
W ,(x) e T iy (3.3)

where A = JAh/mw and H,(¢) are the Hermite polynomials. The eigenvalues of the harmonic oscillator that
are the eigenenergies are

N
)ﬁm n=012,... (5.6)

o] —

'
En = Ln+

5.2 THE HERMITE POLYNOMIALS

The Hermite polynomial H,(c) is a polynomial of degree » that is symmetric for even n and antisymmetric
for odd n. The Hermite polynomial is a solution of the differential equation

LH(Q  dH () (2-’*—"" )
dc_,z +2¢ dc %—1 Hig) =0 (5.7)
This equation can be reduced to
IHQ  dH Q)

dc? —<6 dg

+2nH (g) = 0 (5.8)

80
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The Hermite polynomials also satisfy the following relations:

dH ,(c)
ac = 2nH, Q) (5.9)
and
H, (6 = 2¢H,(6)~2nH, _(q) (5.10)
The generating function of the Hermite polynomials is
: - 1.9,
S(g1) = e’ *¥ = Z P (5.11)
n=0
and
dﬂ
H.(g) = d—tn[S(G, nH] (5.12)
Ir=0

More information on Hermite polynomials is given in the Mathematical Appendix.

5.3 TWO- AND THREE-DIMENSIONAL HARMONIC OSCILLATORS

Similar to the one-dimensional case, the Hamiltonian in the two-dimensional case is

y _p_f+p‘f me’ m(nf,y2
2= Ty YT YT

(5.13)
In this case the Hamiltonian is separable in x and y, so the problem is reduced to two one-dimensional harmonic
oscillators, one in x and the other in y. The eigenfunctions in this case are
Y, (53) =W, @V, (5.14)
where vy, (x) is the eigenfunction of the one-dimensional harmonic oscillator. The eigenvalue corresponding to
anny (x’ )’) is
| l
En'"y = ﬁmx(n'r+§)+ﬁmy(ny+§) (5.15)

The generalization to the three-dimensional case is straightforward.

5.4 OPERATOR METHODS FOR A HARMONIC OSCILLATOR

Eigenfunctions can be thought of as an orthonormal basis of unit vectors in an n-dimensional vector space
that is obtained by solving the Schrodinger equation. Here we will go a step further. We will find+the eigenvalues
spectrum and eigenfunctions using operators alone. The lowering and raising operators, a and a , are defined by

_ [rofs, 2 ) o el
a= Zﬁ(x+mu) a =5\ na (5.16)

These operators are very useful tools for the representation of the eigenfunctions of the harmonic oscillator.
Note that the Hamiltonian of the harmonic oscillator can be written as

H = ﬁm(a+a+%) (5.17)
or
+ 1
H = ﬁm(aa —5) (5.18)
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It can be proved that the commutation relations for these operators are

[a,af] =1 {H,al = -hwa [H, aT] = hoa' (5.19)
Let us denote the nth state of the harmonic oscillator Wy _(x) as |n), so a and a satisfy (see Problem 5.10)
alny = Jnln—1)
+ 2
aljn) = Jn+ln+1) (3.20)

Now we can justify the names lowering and raising operators for a and at respectively. Thus one can build the
state |n) as

1 n
Iy = J—;(a*) 10) (521)

where |0) is the vacuum state (n = 0).

Solved Problems

5.1. A one-dimensional harmonic oscillator is characterized by the potential
Vix) = ‘kx (5.1.1)

where k is a real positive constant. It can be shown that the angular frequency is ® = Jk/m, where m
is the mass of the oscillator. () Solve the stationary Schrodinger equation for this potential and find the
stationary eigenstates for this system. (b) Refer to part (a), and find the energy eigenvalues of the oscil-
lator. What is the minimal energy eigenvalue? Explain,

{a) The Hamiltonian of this sysiem can be written as

2
H = f—m+§kx2 (5.1.2)
or
- ﬁzd_z ”’_(Dz 2
H = —ﬂdxz-’- 5 X (5.1.3)

Thus, the eigenvalue equation is

ﬁ d (x) mw?®
T ‘:2 + 3 y(x) = Ey(x) (5.1.4)

. 2E . mw
We define € = 7o and we change the variable to { = 5 hence, we have

Ly _ d(dy) Ly mody
dx dx(dgdx) - dgz( ) - dg {5.1.5)
Therefore,
hwd y(
2 :l;g 2 +Ey (5 —"‘C vy = (5.1.6)
or
d2\|[ 3
—t(E-LHy=0 (5.1.7)

dg
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For large £ (large x) the dominant part of the differential equation (5./.7) is

dz\u 2
— - =0 518
e Sy (5.1.8)
The solution for this equation points to the asymptotic behavior of the wave function for large § :
y~-et "’ (5.1.9)
So we can assume
2
W) = HGe " (5.1.10)
Substituting in (5./.8) yields
dy d <t Ne 72
—_l = — ' H
i AL SRR GIUE
2 2, 2, 2
= H'(Qye " P 20 H Qe TP H G T+ CHEG e (5.1.11)
or
dz\ll 2 7
B 2H  (C-1)H e (5.1.12)
dg’
Thus we have
(H = 20H + (- DH]e " 7+ (e-CYHe 7 = 0 (5.1.13)
We obtain the Hermite polynomials differential equation,
'H(Q) dH(Q)
e ~W g E-DHEG =0 (5.1.14)

¥ n

The wave function’s behavior around { = 0 (x = 0) is accounted for by these polynomiais. In order to solve

oo

this equation we substitute H({) = E a,l’, sothat

n=1>0
dH % P ,
;E'z' = ann-nHg ° = Zam(nﬂ) (n+1)§ (5.1.15)
n=0 n=0
and
. _2§d§ = Zlna ¢ (5.1.16)
Hence,
zlan+z(n+2) (n+1) -2na,+ (e-1a,{" =0 (5.1.17)
n=0

Therefore all the coefficients of this series must vanish:

a, ,(n+2y(n+ 1)+ (e-2n-1a, = (5.1.18)
or
__Zn+l-e Iy
G2 = s 2) (ne D% (5.1.19)
We set 2,20 and @, = 0 to obiain the values of a,, a,. . . . @,,, (m=positive integer), and similarly a, = 0
and @, = O to obtain the values of a,, a5, ..., a,, _, {(m=rpositive integer). The a, or 4, values are com-

puted using a normalization condition for the wave function. 3
As in part (a) we wish the wave function to asymptotically approach e > for large £. Tobegin, set the values
of the coefficients of H({) to zero for some value ». For that n, we obtain

2n+l-e=0 (5.1.20)
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Thatis, € = 2n+1, or

1
E,, = (n +§ Lo
Thncsmn wxrn ~bhidnic slan artnetimati e e dieine oo tha armacas cioarmualinias Wialh it am a;mace om
nonee, wo ouvialll uic l.lud.llllLdllUll COLIULEIULL 101 UIC CLICT y Clgtlivaluts., vy illuul alt Cll lgy av
reaches its minimal energy eigenvalue E, = #0/2 at the temperature T = 0. This value is

uncertainty relation

h
AXAp=§

and is the minimal energy eigenvalue the system can have.

[CHAP. 5

A particle with energy £ = fiw/2 moves under the potential of a harmonic oscillator. Compute the
probability that the particle is found in the classically forbidden region. Compare this result to the prob-

ability of finding the particle in higher energy levels.

For the classical harmonic oscillator we have

x=A, cos (@ P = —mA, @sin {@) (5.2.1)
Hence the energy is
2 me'Al
E = m +t3mox = 3 (5.2.2)
2E, 2E,
which yields A, = |——. The classically forbidden region is XI>A, or |x| > —. Thus the probability of
o mo
finding the particle in the classically forbidden region is
-A, = oo
P, = J[ VL0, ) dX+J[ w0y, (x) de = 2_! WL, (x) dx
e A, A,
A”
= 1‘2I VRO, (x) dx (5.2.3)
Considering the ground state, we have
1 —xz/Az
P, =21 yhy,x) de = 2 ? e dx (5.24)
pid
Ay A
Changing integration variables 1 = x/A we obtain
oo AD/K
2 f 71: 2 712
P, == tdn=1-—x ) 52.5
0 \/T_EJ e dn ﬁJ e dn ( )
Ao/l 0
We have A,/A = 1; hence,
1
2 J' 2
P,=1-—F] ¢ 52.6
0 K dn ( )
0
Solving this numerically we obtain P, = 0.1578 (see Problem 12.8).
For excited states the probability for being in the classically forbidden region is
t'An 1 s N < rA'i 7 N 7N
i o x) 2.2 i of x 2.2 (x
Pn=l—2J —H —e"‘”‘dx=1——-;,_—J H -e“”‘d*) 527
i 13 2 ) 11 i (52.7)
Putting n = x/A, we arrive at
A/h
P =1 1 J‘ H e d (5.2.8)
=l-—F/"—1" 4 2.
n J;‘Zn ]?’1! n ﬂ TI
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5.3.

Using the known Hermite polynomials H,(m) = 1, H,(n) = 2n, H,M) = 412 -2, and A,/A = ./3, we obtain:
3

4
Jud, "

The numerical solutionis P; = 0.1116. Also we find

P, =1 26 4m (5.2.9)

/5 /3
1 1
P,=1- —j (1604~ 16m2+4) e = 1-—=| (an*-an?+1)ean = 00951  (5.2.10)
anl Jnd

Thus we have seen that P, = 0.1573, P, = 0.1116, and P, = 0.0951. Note that the value of P, is smaller for
higher energy levels. The reason for this is that particles with high energy are “more classical” than those with lower
energies, and hence the probability for particles in higher energy levels to be in the classically forbidden region is
less.

Using the uncertainty relation Ap Ax2#/2, estimate the energy ground state of the harmonic
oscillator.

The Hamiltonian of the harmonic oscillator is

2 2
Y
H = 2m+ 3 (5.3.1)
The expectation value of the energy is
_po e me
(HY = E = TR (x) (5.3.2)
We can write
AP = (p%) - (p)’ A = () - (0 (533
For the harmonic oscillator {p) = (x) = 0. The proof for these results is as follows:
(x) =J. v () xy, () dx :J. |xlun(x)|2dx (5.34)

The integral of the antisymmetric function x|w,, (x)|° over a symmetric interval is zero; hence, (x) = 0.
Similarly,

oo

dy, (x)
(p) = —if ] w3 dx (5.3.5)
Chanoino yariahlas ta {1 = £ and 3 = i a have
\.,uculsl ls yaliauvicd LU l’ A’ aliga Ay Ajm(;)’ WO liarw
: dy, (§)
(p) = —in | wi)y—pr 4 (53.6)
S0,
dy, () OH,(§) 4
= +Cy, (L) (5.37)
18 ag NTA2 N
Thus we obtain
ih " aHn —§2/2 . ) *
() = —=—=| wiQ3C dl— ik | y* (D) w(E)Ld (5.3.8)
NEA2 nlY e

Notice that

(X>~J.\V*(C) v(Ld, =0 (5.3.9)
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oH (1)
As the Hermite polynomials are either symmetric or antisymmetric, the multiple 4, ({) —82;—_ is always antisym-
metric, and for the same reason that {x) vanishes, {p) also vanishes. Thus,

Ap* mey 2

E=-—+4—7F Ax {5.3.10)
2m P2
: . h
According to the uncertainty relation, the minimal value of Ap is Ap = T Av hence,
S om@t
E = 7+TAJ‘ (5.3.11)
8m Ax©
Finally, the minimal value of £ (Ax) is obtained by
dE A )
7 = — . ;+moy Ay = 0 (5.3.12)
(Ax) 4m (Ax)
So Ax, = f-—fi— Al
0 Axy =[5 Also,
I’ 34
dE_ =t me’ >0 (5.3.13)
d(an)’, _ aay 4m (Ax)
Hence, the minimal value is
# o Aw A ho
o = —————~7+n'—2 (A.Y())z =3 Y7 =7 (5.3.14)
dm (Axy)”

as we expected. Here we obtained the exact selution by relying on the lower bound of the uncertainty relation
Ax Ap = A/2. This follows from the result that in the ground state we have a Gaussian form of the eigenfunction:

‘u(‘} — (2n6)1/4e—1p\/ﬁe~ (4 \”):/’40E (5315)

Though the uncertainty relation is normally used to estimate the ground state energy eigenvalue, for the case given
above we can evaluate it exactly.

Find the eigenfunctions and eigenvalues of a two-dimensional isotropic harmonic oscillator; find the
degeneracy of the energy levels. The Hamiltonian of this system is

2 2
Dy v _1_ 22 2
H = 2m+2m+2m(«) (X" +)y) {(5.4.1)

The Hamiltonian of the system can be separated into two parts, H = H + H_, where

r mey oo D mey 54.2
Im* 2 Tt T2 (04.2)

H =

Thus, the wave function can be written as a multiple of two functions, ¥ (x) (the eigenfunction of H ) and V()
(the eigenfunction of H ) with eigenvalues £, = Ao (s, +1/2) and E, = fw (n, + 1/2), respectively. So we
have Hy = Ewy, where y(x,y) = y (x)w (3): hence,

Hy(x.y) = (H +H)y (w00 = Hy w00+ ¥ 0H ()
=Eyw +Eyy = (E+E)y vy, (5.4.3)
Therefore,
E=E+E = (n+n+hHho=(n+1)ho (544)

The degeneracy of each state £ (r,, n,) is computed as follows: (n + 1) is an integer that assumes all values from
0 to <. We can see from Fig. 5-1 that (n + 1} = const. defines a line in the 5 n_ space. One can also see that the
degeneracy of the state nis n+ 1.
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5.5.

n

3\ L] - - 'n
n+1 =n.‘+n'..,+l=2\\

\ . L .

l \ . e

T 22N3\4 n,
n+l=n+n+1=4

Fig. 5-1

It
4 . . . .
2

Consider a particle with charge +¢ moving under a three-dimensional isotropic harmonic potential:

1
V(ir)y = émwzr2 (5.5.1)

in an electric field E = E %. Find the eigenstates and the energy eigenvalues of the particle.
The Hamiltonian of the system is

p? me’

H = 2Tn+—2‘“r2—eE(,)r (5.5.2)

We separate the Hamiltonian into three parts: H = H _+H _+H_, where

Pf mw
- 2_

H. = Iat T2 eEyx

P mo’ 5
H =5 +757y (5.5.3)

2 >

P omw
H = Iat e

Notice that H_and H, are identical te the Hamiltonian of the one-dimensicnal harmonic oscillator, so we can
write the wave function as y (x, ¥, 2) = W, (), (¥) ¥, (2). where y, (y) and , () are the wave functions of
the one-dimensional harmonic oscillator:

1 REYETS
Vo (y) = ——=H,6 (y)e !
TR 2,
o (5.54)
v, (z) = _’;___H:r (2) gi'. 72X
Ajn?dn’n]!
ith & = |2 The equation of y, (x) i
wit = Jma e equation of y, (x) is 2
A0V med
Hwy, (x) = —fn§+7x Y, —eExy, = E\y, (5.5.5)
Changi iables to { = & o el
anging variablesto § = 5 — lelds
ging N ,_ﬁm(,l)y
AT ETNCN Gy, = 0 (5.5.6
+| — + — = WD )
df;z Ao P v, W,
We obtain the ditferential equation for a one-dimensional harmonic oscillator with the solution
H, (%) e ? (5.5.7)

]
Vi () = ——
A TTA2 'n,!
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or

E 2
%— £ H (5.5.8)

1 1
v (x) = ———H, (x) ﬂp[—'[
1 JTA2"n ! ' ? fim’

The quantization condition in this case is

2
2E, (eE,)
Fy rescae 2n, +1 (5.5.9)
so the energy eigenvalues are
2
1 (eEqy)
(E)y = (n +—]ﬁw— (5.5.10)
! 2 2may
In conclusion, the wave functions are
(X, y2) = g, (X)y, (y)y;(2) (5.5.11)

and the energy eigenvalues are

E 2
i LE0

=E +E +E = (n +ny+n,t+5 (55.12)
1 2 3 ! 2 32 2m0)2

)

Consider a particle with mass m in a one-dimensional harmonic potential. At t = 0 the normalized
wave function is

1 174 2 2
yix) = (—2) e (5.6.1)
no
where G # — is a constant. Find the probability that the momentum of the particle at r > 0 is positive.

m@®

We denote by l:[(p, ty the wave function of the particle in the momentum space at time ¢, The probability P for
a positive momentum is

P = J b (o, | ap (5.6.2)
4]

We can write y(p, #) as a linear combination of the eigenfunctions in the momentum space:

—i(n+1/2) ot

V.0 = D Chupre

n=0

(5.6.3)

where &),,(p) are the stationary eigenfunctions in the momentum space and the coefficients are C, = (q),,_(x)!\y(x)).
Note that here ¢,(x) are the eigenfunctions in the coordinate space. y(x, ¢} can also be written as

wix, 1) = chxp,,(x)e“ (e 12y ar (5.6.4)

The functions ¢, (x) are either symmetric or antisymmetric, as are (I),,(p) (their Fourier transform). This attribute is
conserved for every r, thus, y(p, 0) is symmetric, y(p, 0) = y(-p, 0), and also y(p, 1) = y(-p, 1). Hence,
—oo 0

- 2 - 2 - 2 ~ 2
j v, ol dp = J lye-p ol dp = —I wep, ol dp = J v, ol dp (5.6.5)
0 O 0 —oa
Using the fact that w(p, 1) is normalized, that is,

0

I o, ol dp = I v, t)|2dp+_’- v, of dp = 1 (5.66)
o 0

—oo
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5.7.

we obtain
0

P= J e, ol ap = J e, ol dp = 3 (56.7)

—oo

(a) Refer to the initial condition in Problem 5.6 and calculate y(x, ). (b) Given thatat ¢t = 0 the particle
is in state

1
y(x) = ‘ﬁ[%(x) +¢, (0] (5.7.1)

where ¢, (x) are the eigenfunctions of a one-dimensional harmonic oscillator. Compute the expectation
value of x at t > 0.

h
(a) First, note that the given y(x) is not y(x) (the eigenfunction) since G # iy 30 to find Y(x, 1) we must write
Y(x) as a linear combination of the eigenfunctions ¢ ,(x):

y(x) = ZC,,‘b,,(x) (5.7.2)
and
Wi, 1) = ZC"q)"(x)e_'(““z)ml (5.7.3)
where
T _ .
= (0, () |yx)) = J O (OW(x) ax (5.7.4)
Now, writing A’ = ——, we have
- (3 e [4(1)]
,(x) = n'/zl2"n!H" 2 exp| -3\ % (5.7.5)
50,
1 1 "'H(x)ep[lz(1+1)}d 576)
= AT JEXP) x| 5+ X 7.
Wz YRRt N 2 \\7 5

Recall that H, (x/L) are either symmetric (for even n) or antisymmetric (for odd n); hence, since H, (x/})

. . 1,01 1 . . :
1s antisymmetric and exp [—Exz( T+ ?ﬂ is symmetric, C, vanishes for odd n. Thus we need only compute

c : J (x] [ ] 2[6 2 ]]a’ (5.7.7)
m T Jexp X 7.
: [7:4 (2m)! cl] A A6
2 -2 72
- . G +A .
Substituting variables | = 5 and x = [———7 we obtain,
2\ ¢ A +o
c 1 r ( ‘ 2{12 \ -‘-‘12 '2)_252 m (5.7.8)
m = n e WV
? Jra™ 2m)t ho J W ‘+o’ J A +o

270 J ( 26" J n?
= H e ™"
"/7[4m(2m)!(7k.2+62) i 2 '\}lz+62n n
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Using the identity

oa

_.-2 2 ! m
f H,, (axye " dv = it n'ﬁ) (@ -1) (5.7.9)
we get
) 2—A2 m
¢, = J i 2;\67(2"21)- z (Gz 2 (5.7.10)
4" (mH (A +6 )\ o +A
or
yix, 1) = Zoz,,\uz" (xye 2B (5.7.11)
n=0
It is given that at t = O we have
|
Yy, 0) = ;,Elq)(,(x)+¢,(x)J (5.7.12)
Thus, for ¢t >0,
| —twi/2 -t /2
y(x, 1) = ﬁ [Dy(xre +0,(x)e ] (5.7.13)

By definition, the expectation value of x is

1
(0 = (ylx Dy 0) = 5 [0 |xldy(x)) + (¢, (0)xi,(0)

{1

+ € {QOXI0, (X)) + € (0, ()X 9g(x)) ] (5.7.14)

Let us compute each part separateiy:

oo

(g3 Gylx) = J. OO dx = J. |q)0(x)|2dx (5.7.15)

-o0 —oa

Since |¢U(x)| is symmetric and x 1$ an antisymmetric function, the integration vanishes on a symmetric inter-
val, (§,(x)|x|¢o(x)) = 0, and also (¢, (x)|x]¢,(x)) = 0. We turn now to compute

oo ss

| l 2.2
(OIxlo, () = J OO0, dx = T_Tj HD({)H,(%)M* M dx (5.7.16)
. TOOAN2TRS
We have H,(x/A) = 1 and H, (x/X) = 2x/) (see the Mathematical Appendix). Therefore,
21 R [ 1
(Op(x)|x|9,(x) = ﬁPJ e dx = 7 (5.7.17)
f
or (g1} |xle,(x)) = 5 and
= ] * = JL 5.7.18
(0,(0x[0,(x) = (O |xl$,(0))* = Imm {5.7.18)

So, we finally obtain

q

{(x) = ‘\IZm(A)LUS (wi) 5.7.19)
§.8. Consider the one-dimensional harmonic oscillator with the Hamiltonian
p2 I 20
H = ﬁ+§mmx (5.8.1)
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We define new operators

_L _ m
P= — and Q=x 5 (5.8.2)

fiw
so H = (Q2 + P2). (a) Compute the commutation relation [P, Q]. (b) For the operators a and
a defmed as

a f(Q+lP) = /mz)er lmp (5.8.3)

I
o' = F©@-iP) = f’ff‘-’ mlmp (5.84)

T . . : .
compute aln) and a |n), where |n) is the eigenfunction of the oscillator for the nth energy state.

(@) We use the known commutation relation [x, p] = if, so
[P, O] L Aj/r—n_u)} = l[,p xl =~ (5.85)
L} J_ ﬁ ’ = - U,
(b) Using the result obtained in part (@) we can write
1 2.
da= 2(Q—zP) (Q+iP) = 5[0+ P ~i(PQ-QP)]
1 2 2. L2 2
=2(Q +P —J[P;Q])=2(Q +P -1) (58.6)
so substituting in (5.8.7), we have
1
H = ﬁw(a*a+ 3) (5.8.7)
Now we turn to compute the commutation refation a and a'
1
[a'.a]l = 5[Q-iP.Q+iP] = i[Q,P] = -1 (5.8.8)
Thus, a'la—aad = 1. Therefore, we obtain
H = ﬁa)(a(f—%) (5.8.9)
We also need to compute the commutation relation of g and a' with H,
[a,H] = f’w)[a,afa] = ﬁw[a,at]a = fiwa (5.8.10)
Similarly,
PO B L .t ta 2 . 1 .t . t P
ja,H] = hoia ,aa'] = hwa,ala = -hwa (5.8.11)
Thus, using the eigenvalue equation of the energy H[n) = fiw (n+ 1/2) |n), we can write
Hln)y = ﬁm(a a+s )ln) (5.8.12)
Therefore, a'aln) = nln). Similarly,
Hn) = ﬁm( aa' - %)m} (5.8.13)
+ 1
) aafln) = (n+1)n). Weapplya = —>— [aT, H] on the state |n}, so
t t 1
aH Ha 1 Ha
afln) = —mln) + %ln) = - (n + é)afln) + %In) (5.8.14)
or

H (afln)) = ﬁw(n + %)(a?ln)) (5.8.15)
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Hence, we conclude that afln) is a state that is proportional to |n + 1}, i.e.,

wy=a'ls) = aln+ D) (5.8.16)

where @, is a constant given by
@, = (y,|v,) = (rlaa'in) (5.8.17)
We have already seen that aa'ln) = (n+ 1) |n; thus ai = (n+1). Choosing a, = Jn+l, we finally get
a'ln) = Jatin+t) (5.8.18)

1
Similarly, we apply a = ho [a, H] on the state |n) and find

aln) = %gjn) - g—zw = (n + %) (aln)) —0% (aln)) (5.8.19)
or
H(aln)) = ﬁw(n - %) (aln)) {5.8.20)
So we conclude that aln} is a state that is proportionai to |n— 1}, i.e.,
ly_)=almy = o_n-1) (5821)
where &_ is also a constant
o = (y_|y) = (nlaal) (5.8.22)
We have seen that afaln) = n|n); therefore o = n.Choosing 0. = Jn we get
ajny = Jnin—1) (5.8.23)
Note that if we apply a to the ground state |0) we get
aloy = 0 {5.8.24)
Thus, we introduce the towering and raising operators a and a' defined above that satisfy
aln) = Jnjn - 1)
{ a'lny = Jn+lin+ 1) (5.8.25)

Compute the matrix elements of the operators x and p for the one-dimensional harmonic oscillator,

Xk

(n|«dk) = J. o* (x) X9, (x) dx (5.9.1)

P
P = (lplR) = | 0500 pty (x) (5.92)
where ¢, (x) are the eigenfunctions of the harmonic oscillator.

Let us write x and p using the lowering and raising operators a and a’ (see Problem 5.8):

A2 s [ '
x =35 mw(a+a) = 2mw(a+a) (5.9.3)

a [0 8
P= G mga-a) = J—(a -a) (5.9:4)

Similarly,

from which we can now compute

% %
(nlxk) = {m<n|(a+a*)|k> = }m((n|a|k>+<nla*|k>) (5.9.5)
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We have seen that

{alk> = Jklk-1)
aly = Sk 1+ 1) (5.9.6)

Therefore, we have

(n|xlk) = fz—z—(—o(./l_c(njk—l)+dk+l(n|k+l)) = sziL-(l—)(,./I_cﬁn’k_l+./k+15n_kH) (5.9.7)

where
1 n=m
5,,”, = 0 n&Em (5.9.8)
Hence,
fﬁ(n+ 1) _
S k=n+1
(nldk) =\ [hn P (5.9.9)
2m® =n-
L 0 otherwise
In the same way we can compute
., (moh . [mwh
(nlplk) =i T(nl(af—a)lk) =i T((nlaflk)-(nlalk)) (5.9.10)

Now using the relation (5.9.6) we have

(nlplk) = i m%"il(a/k+1(n|k+l)—~/7c(nlk—l)) =i @g)-ﬁ(A/k+1a,,,M—./7ca,,,k,l) (59.11)

i /"";ﬁ" k=n-1
(nlplky = | . [moh(n+1)
RO s e— k

0 otherwise

so we obtain

(5.9.12)

n+l

We can express {n|x|k} and (n|plk) in a matrix form as

0 1 0O

1 0 .2
0.3 0.3

s [ % ~ i
(nlxlk) = ,\/m o 0.3 0 ' (5.9.13)

and
0O -1 0
1 0 -2

0 ﬁ O—ﬁ"'
[moh - L
(lplt) = i J"5=| 0 0 3 o0 (5.9.14)

As expected, x and p are represented by Hermitian matrices.
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5.10. Consider a one-dimensional osciliator in the nth energy level. Compute the expectation values

& W D, )

What can you say about the uncertainty relation Ax Ap?

Using the operators a and a', one can find that

f
() = T (201 (5.10.1)

A
(P = %(2“ ) (5.10.2)

h
ap = () = [T 2
Ax = (Y —{x) = }m(2n+])

and (p) = 0, {x) = 0. Therefore,

v
]

fi
Ax Ap = 5(2n+1) (5.10.3)
Hence, the ground state satisfies the minimum of the uncertainty relation:
A
Ax Ap = 3 (5.10.4)

5.11. The simplest molecular crystals are formed from noble gasses such as neon, argon, krypton, and xenon.
The interaction between the ions in such a molecular crystal is approximated by the Lennard—Jones

ls] 12 fe] 6
iy = 4"0[(7) -(;)] (5.11.1)

1.
PUl\allLlﬂl.
The values of V, and © for the noble gasses are listed in Table 5-1.

Table 5-1
Ne Ar Kr Xe
Vy(eV) 0.0031 0.0104 0.0140 0.0200
o(X) 2.74 3.40 3.65 3.98

Find approximately the ground state energy of a single ion is such a crystal. Hint: The ion near the min-
imal value of V(r) can be treated as a harmonic oscillator,

We begin by approximating the potential V(r) near the minima to a polynomial of the form

k
V=V, +50-r) +0[(r-r)] (5.11.2)

where V,, is the value of V(r,) and r,, are the minima. Hence,

e { 12 6\

dv g a

= 4VUL— 125 + 6;7J =0 = r,=2"% (5.11.3)
thus, V(r,) = —V,. Similarly,

d*vi ¢’ o vV
k = dr([) = 4v0[156F-425 = 36~22”;§ (5.11.4)

m
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Now we can approximate the behavior of an ion in the crystal to the behavior of a harmonic oscillator. The ground

k
state of a harmonic oscillator with potential V(r) = U,+ ( i) (r—rg)’ is

Y > I3
i nojk
Eyg= 3 +Uy = §J5+U(, (5.11.5)
where m is the mass of the ion. Therefore,
Ak 3m-27 v,
E0=Vm+§ - = p ;—VO (5.11.6)

Supplementary Problems

5.12. Show that the eigenfunctions of the harmonic oscillator in the ground state and in the first excited state have inflec-
tion points wherever the condition V(x) = E is satisfied, i.e.,

mm? 1
e - ﬁm(ﬁi) (5.12.1)
5.13. Find the eigenenergies and eigenfunctions for a particle moving under the potential
mow’
= x>0
W(x) = o (5.13.1)

B
Hint: [t is easy to solve the Schrédinger equation for x > 0 and for x < 0 separately, and then demand that the eigen-
function for all values of x will be continuous.

Ans. The eigenfunctions are ¢, for n odd where ¢, are the eigenfunctions of the harmonic oscillator. The corre-

sponding eigenenergies are £, = ﬁm( n+ %J

5.14. Consider an isotropic three-dimensional harmonic oscillator. (@) Perform a separation of variables and find the
eigenstates of the system. (b) Find the eigenenergies and determine the degeneracy of the levels.

| H, OH, WH, (2)
(n?\,) J,“\/z(nl +n2+n3)

(3-1+n)! (n+1) (n+2)
® g, = rGo D! 3

—(:(2+y2+22)/27‘2
e

Ans. (@ w(x,y,z) =
'nt ol
ntontongl

5.15. The wave function of a harmonic oscitlator at time { = 0 is
1
v(x0) = 240, + szpz +Ab, (5.15.1)

where ¢, is the stationary eigenfunction of the oscillator for the nth state and A is a normalization constant. (a) Com-
pute the constant A. (b) Compute the eigenfunction W (x, ¢) for all values of «. (¢) Calculate the average (E) at times

[Legp 84 Lo 00814 } ;U L LY LIV ARULS U J —daitil

t=0,t=n/w, and 1 = 2n/®. (d) Find the expectation values (x) and {p) for 1 2 0.
2 2 darr2 | 1 “Siwrr2 “Tiwr/2
Ans, (@A = J; &) y(x,1 = f;(ﬁtp,e ’ + 50 orr2 | ge O );

31
@ (B, = (E)| 4 = (E)| 4 = [3hoi@ (1 =0, (p)=0.

b3
w
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5.16. Consider an isotropic two-dimensional harmonic oscillator. (@) Write the stationary Schrdinger equation for the
oscillator. Solve the equation in Cartesian coordinates. (b) Write the stationary Schridinger equation in polar coor-

dinates and solve it for the ground state. Is this state degenerate?

Ans. (a) Schrodinger equation:
2

2 2
(o, 2 me? .
5’;[5)72+372]W(x’y)+-2_(x +¥IW(x,y) = Ey(x,y)

me mQ
Voo (5,3) = J 7 CXP[—T (x2+y2)}

(b) Schrodinger equation:

112 13°y (r,8) mo’
Tmrar VO + 5T ST T (0 8) = EV(n,8)

nmaoy miy 3\

mm [ mo .
Yoo (1, 8) = Ajﬁexpk—Tr‘)

and the state is not degenerate (ground state).

5.17. Compute the matrix elements (nlxz‘ m) and (n'pzlm) for the one-dimensional harmonic oscillator.

Jm(m-1) n=m-2
) 5 (2m+1) n=m

ans.(rllm) = 50\ G GTD n-me2

[ O otherwise
m n=m-2

ro) —(2m+1) n=m

(lplmy = 75

Jm+1) (m+2) n=m+2

0 otherwise

5.18. Compute {n|px|m) for the one-dimensional harmonic oscillator.

it

2 m=n
ih o ——— "
2~Nn—-1L)n m=n-2%2

Ans, (nlpxlm) =

I
=
+
N

ik
7J(n+2) (n+1) m

5.19. Compute the matrix elements (n|x3|m) and (n|x4|m) for the one-dimensional harmonic oscillator.

b 32
( ) Jn+3)(a+2) (n+ 1) m=n+3

2mo
372
3(ﬁ(.n—+l)1 m=n+1
3 \ Z2m@® /
Ans. (n‘xlm) = hn \372
(me] m=n-1

( A )3/zm o

2mo

(5.16.1)

(5.16.2)

(5.16.3)

(5.164)
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A\
[T) N+ D) (n+2) (n+3) (n+4)

2
2
4(,\,,,_.) nd{n+1) (n+2)
AN /
Eo\2
2(—] (3 +2n+ 1)

2mm

(4n-2)(2—,%,]2m

A 2
P arE e

]

97

(5.19.1)



Chapter 6

Angular Momentum

6.1 INTRODUCTION

As in classical mechanics we introduce the quantum angular momentum as the quantity

L=rxp
In quantum mechanics L, r, and p are operators having representations in Cartesian coordinates:
L = (Lsty,Lz) p = (p_x’p_)ﬂpz) r= (x’y’z)
Thus,
_ -yl 2
L =yp -zp, =i Y3z~ %5y
s
L,=z2p —xp, = - P
_ (2 2)
L, =xp,-yp, = —i xay_yax
and also

L’ = Li+Li+Lf

In Cartesian coordinates the commutation relations between L ; (J = x,y,2) are

(LoL,) = ihL,
(L, L] = ihL,
(L.L]) = ihL,

6.2 COMMUTATION RELATIONS

(6.1)

(62)

(6.3)

(6.4)

(6.5)
(6.6)
(6.7)

Using the commutation relations in Section 6.1, one can also find another useful commutation relation:

[LL] = 0= [L%L]) = [L%L] = [LYL] =0

(L,r) = iﬁZeijkLk
(L.p;] = iﬁZEijkpk

[L,p') = [L,7"] = [L,r-p] =0

-------

1 ijk have cyclic permutation
€ = -1 ijk have anticyclic permutation
0 otherwise

98

(6.8) -

(6.9)

(6.10)

(6.11)
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6.3 LOWERING AND RAISING OPERATORS

We define the raising operator as

L, =L.+ilL, (6.12)
Similarly, the lowering operator is defined as
L =L,-iL, (6.13)
SO we can write
L +L_ L -L_
L, === L, =5 (6.14)
L, and L_ are not Hermitian operators, since it can be proved that
L,=L' (6.15)
Moreover,
L>=1+ % (LL_+L_L,) (6.16)
and also
LL =L ~L’+hL, (6.17)
L L, =L -L+#L, (6.18)
Thus, we have the commutation relations:
(1,1 =0 (6.19)
[L,L,] = kL, (6.20)
[L,L_] = 2kL, (6.21)

The operators L_ and L, enable us to represent all the eigenfunctions of L* and L, using only one eigenfunc-
tion and the operators L, and L_.

6.4 ALGEBRA OF ANGULAR MOMENTUM

The operators L™ and L _ describe physical quantities; hence, they must be Hermitian operators, that is,

2

(L)' =L = H =L (6.22)

One can verify that L* and L, are commutative operators, (L2, L] = 0 [see Problem 6.2, part (a)]; it is thus
possible to find the simulation eigenfunctions of both L™ and L, (|/m}), which comprise a complete orthonormal
basis:

L2im) = 11+ )& |im) (6.23)
L|im) = mh|im) (6.24)

Operating the lowering and raising operators on |/m) gives
Limy = JTT+ 1) ~m(m+ DAL m+ 1= J(I-m) (I+m+ DA, m+1) (6.25)
Limy=JTU+1) —mm=-Dall,m-1)= J(I+m) (I-m+ DA, m—1) (6.26)

Note that if {/m) is an eigenvector of L? with eigenvalue ! (/ + 1), then for a fixed / there are (2! + 1) possible
eigenvalues for L,:

m=-l, -I+1,...,0,...,1-1,1 (6.27)
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Thus,
LJ,1)=20 (6.28)

L I,-=0 (6.29)

The basis |/m) is orthonormal, i.e,

{Iym, [12’"2) = 8,1,26,"],"2 {6.30)
This basis is called the standard basis. The closure relation for the standard basis is
o !
3 limy it = 1 (6.31)
I=0m=—
6.5 DIFFERENTIAL REPRESENTATIONS
The representation of eigenveciors and eigenvalues is often more convenient using spherical coordinaies
x = rsin@ cosd y = rsin@sind z = rcosB (6.32)
The representation of the angular momentum operators in spherical coordinates is
( . d cospad )
L= ‘ﬁ( Sin® 36 * 090
{Ly = 1ﬁ(—cos¢ 38 * tan62¢ (6.33)
d
L. = -itss
4 GQ
which yields
2 2
2 2l o 1 o9 1 o9
L =# ""(iﬁco:e ) (6.35
« = €150 3% ~9)
Y i)
L = he (—ae+z cot9 30 (6.36)

. 2 .
Thus, the eigenvectors of L™ and L, are functions that depend on the angles 8 and ¢ only; hence, we can repre-
sent the wave function as

v(r,8,0) = R(NY,(8,0) (6.37)
For a central potential V(r) = V(r), we find that Y,m (8, ) are the spherical harmonics, where
limy = Y8, ) (6.38)

The algebraic representation of Y,m(G, ¢) for m >0 is
20+t (I-m)! _,, .
Y,®0,¢) = (-1)” / am (Lom)i P (cos8)e™ (6.39)

m B fm (2041 (I=|mD) ! imo
Y,0,¢) = (-1) “an —_(I+m)! P, (cosB)e (6.40)

and for m <0,

P;"(x) are the associated Legendre functions defined by

m

- md
Pi(x) = (l—xz) d—P,(x) (6.41)

m
X
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where P, (x) are the Legendre polynomials,

(— )' d
P(x)y = —F7——"—(1- x2)! 6.42
0 =7 ( ) (6:42)
Note that the Y,m (0, &) are uniquely defined except for sign, which is changeable. The spherical harmonic func-
tions, the associated Legendre functions, and Legendre polynomials are described in detail in the Mathematical

Appendix.

6.6 MATRIX REPRESENTATION OF AN ANGULAR MOMENTUM

We have already mentioned in Chapter 4 that an operator can be represented in matrix form; this
representation depends on the basis vectors (eigenvectors) that we choose. For an angular momentum
operator we usually use the standard basis |/m), so every matrix element A;; that represents the operator A
satisfies

A, = (Al (6.43)
) LR ¥ \

Ayj 42

Thus, for every / = const., we can write a (27 + 1) x (27 + 1) matrix for LZ, L, Ly, and L,; thatis,

(L = Gl = 10+ 1A%, (644)
(L), = C(HLJL) = jA3, (6.45)
A
(L, = NLJ) = 3T=m) (+m+ D3, +/T+m) (I-m+ 1), ;_|] (6:46)
rroN Y EEIE 20 I Y _ﬁ'r {72 £ L1y © fr1 . N 217 - 1 647
(L), = iy = 50 U-m) (G+m+1)0; ;) ~~(l+m) (I-m+1)0, ;] (257
For | = 1, for example, we have
1y 10y [1-1)
1 0 o\
=240 1 o0 |10 (6.48)
0o 0 1/]1-1)
and
|11> |10> -1 1)y 10y |1-1
011 ‘ 11
" )l ) ﬁ(o 0 )I )
L =% [ |10 Ly="5 i i | [10)
=5 :
K I o /Ji-1 \ P01
|1 |10y [1-1)
1 0 0 \I11)
=k 0 O 0 ||10) (6.49)
0 0 —1/il-1)

6.7 SPHERICAL SYMMETRY POTENTIALS

From classical mechanics we know that when a spherical symmetry potential V(x, y, z) = V(r)actsona
particle, its angular momentum is a constant of motion. In terms of quantum mechanics this means that the angu-
lar momentum operator L? commutes with the Hamiltonian:

p? A2 1 a( a) Lr
H = E+V(r) - Zar 5% - +V(r) (6.50)
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where the angular dependence of the Hamiltonian is found only in L*?. We can thus split the wave function in two:
an angular part depending only on 8 and ¢, and a radial part depending only on r (see Problems 6.16 and 6.18).

6.8 ANGULAR MOMENTUM AND ROTATIONS

Let |y) be a state vector of a system in a certain coordinate system O. To represent the state vector in
another coordinate system O' we define the rotation operator U, such that the state vector in O' is given by

') = Uy Ty (6.51)

For a system O' obtained by the rotation of O around an axis in the direction of 7 with an angle 8, Uy, is given as

U, (8,7) = exp(—éﬂfz : L) (6.52)

where L is the angular momentum operator. L is said to be a generator of rotation. One can conclude from the
definition that

Wl = WlUy (6.53)
Note that to obtain U, we usually use the infinitesimal rotation operator:
Ug(dB, i) = l—édBL-fz (6.54)
Note also that :
Up(2m,A) = Ug(0,7) =1 (6.55)

Uy can be used as a rotation operator not only for state vectors, but also for other operators or observables. Thus,

an vable A in the system O is transformed to A' in the system O' such that
. T
A = UyAUy (6.56)
Or similarly,

A= Ul AU, (6.57)

Solved Problems

6.1. Using the definition of angular momentum, L. = r X p, prove the following commutation relations:

@ [L,r] = iR Y &pre 0 [L,L) = ik > e, L, (ij k= x,2). Note that if A and B are
k k

vector operators, then the kth component of the vector operator A X B is

(AxB), = D e ,AB, (6.0.1)
iJ
Use also the identity ZSU,( €nk = im0, — 9,8, .

LY

(@) Using the definition . = rxp we obtain L, = Zek,,rkp,; thus,

&1

[Ln r_,'] = 28“,' ["ka rj] = ZEH,‘ (r,k [pp I‘J] + [rk! r',] P,) (6.1.2)

k! ki
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Using the commutation relations [r;, r] = 0and [p, I'j] = —fﬁS,j, where
1 I =]
g 0 otherwise ( )
we obtain
(L,r] = Ze,q,(—m) 87 = ~ih D Eyry = —iﬁZe,k}rk - iﬁZs,jkrk (6.1.4)
I ! L &

We decompose the commutation relation [L, L] = iﬁZE, ,+L, into the three following commutation rela-
k
tions: [L,,L,] = /AL, [L,L] =ikl and [L, L] = iﬁLy. Note that
L =(rxp),=rp,-r.p, L,=(rxp), =r.p -rp. (6.1.5)
Thus,
[L,L] = [r,p.~r.ppr.p.—r.p.]
= [rp.r.p)l-lrp.ropl=lr.p.r.pl+1lrp.r, p‘v] (6.1.6)

We compute each part separately:

(rypor.pl =rp.r.pd+ [r,r.plp.

=r.(r.lp.pl +Ip,rdp)+ (r.lr,pl+[r,rlp)p, (6.1.7)
Now, using the known relations
lp.p] =0 (p..r.] = -it (r,pl=0 [r.r.1=0 (6.1.8)
we obtain [r,p,. r,p,] = ~ifr p,. Similarly,

[ry p:‘ rxp:] = ry [p:’ rxp:] + [r.\-’ rtp:] p:

=r.(r.(psp)+[p.rdp)+ (lrp,rdp.+r lr,p.1)p. =0 (6.1.9)
and
lr.ppr.p,] =r.lp,rp)+r,rplp,
=r.(lpy,rlp+r.lpap )+ Urorldp +r.lr,pl)p, =0 (6.1.10)
Also,
[r.pyrp) = rlpyrpl + [rorp.lp,
=r.([pprdp,+r \ppyp ) + (lror]lp,+r.lr,plYp, = iirp, (6.1.11)
Thus, we obtain
(L.L] =ifi(rp,—rp) =ifi(rxp). =ikl (6.1.12)

We leave it to the reader to prove the other two relations.

6.2.  Prove the following relations for the angular momentum operator: (a) [L?,L.] = 0; (b)L xL = i&L.
(@) The operator L? can be writtenas L> = LI+ L? + L2, and hence
[L2L) = [L2+L2+L3 L] = (L2 L]+ [L3 L]+ [LLL] (6.2.1)
We compute each part separately:
(12,10 = L [L.L]+[L,L]L, (6.2.2)
We have shown in Problem 6.1 that [L,L.] = -[L,L,] = ~itL . Therefore,
(LLL]) = -ik(LL +LL) {6.2.3)

Similarly, using the commutation relation (L, L] =i kL, we have

(L3 L) = L (L L]+ [L,LJL, = ih(LL +L[L) (6.2.4)
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Since L, commutes with itself, [L2, L] = 0, we arrive at
(L%,L] = ~ik(L L +LL)+ih(LL+LL) =0 (6.2.5)

(b) We will compute separately the components of L x L:

(LxL), =L ~LL, = [L,L] =L,
(LxL), =LL-LL =I[L,L] =ikL, (6.2.6)
(LxLy = LL -LL = IL.L] =ihL,

Thus, summing over the three components we obtain L x L. = iL.

Consider a system of two particles; each particle has its own angular momentum operator, L, and L,.
Show that L = L, +L, is an angular momentum operator; in other words, show that L satisfies the

relation in part (b) of Problem 6.2.
As 1

< :
SRS R4

LxL = (L, +L;) x (L +L;) = (LyxL) + (LyxLy) + (L xLy) + (L, xLy) (6.3.1)

nd L. are both an
e 24o It DARD all

for the sum L. = L, + L, we have

ED

In Problem 6.2, part (b), we saw that if L is an angular momentum operator, then L. x L. = L. Thus,
LxL = itL, +itL,+ (L, xL,) + (L,xL)) = if#(L,; +L,) + (L, xL,) + (L,xL})

=itL + (L, xL;) + (L, xL)) {6.3.2)
We will now compute the term L, x L,:
LoxL, = (L,Ly~L, L)%+ (L Ly =Ly L) 5+ (L Ly —Ly,L,) 2 (6.3.3)
Similarly,
L,xL, = (L,,L,,—-L, L )&+ (L,.L,,~L, L )3+ (L L, ,-L, L, )2 (6.34)
Since L., and L., are ditferent operators, their components commutate; hence we obtain
(LyxLy + (L,xL,) =0 (6.3.5)
So finally,
LxL = (L,+L) x (L, +L,) = ick(L,+L,) = iaL (6.3.6)
Consider the following relations:
L, =L +iL L =L -iL (6.4.1)
Llmy=#JI(I+1) —m(m+ 1)|l, m+ 1) (64.2)
Llm)=a&aJi(dl+1) —m(m-1)|{, m-1) (6.4.3)
Liim) = mh|im) (6.4.4)
L2)im) = 1 (I + DA |im) (6.4.5)

Consider a system of / = 1, and find the matrix representations of L, L., L_, and L? in the basis of
eigenvectors of L_and L2.

S Sy B <=1l wlatl <oy dlt

component of the matrix a; we have a,; . For asystem that has an angular momentum [ = 1, the eigenvectors
of L, are

First we note that the L L. I and L? are Hermitian operators, as are their matrix representations; for each

{15 correspondingto / =1, m = 1
[0y correspondingto! =1, m =0 (6.4.6)
{-1) correspondingto! = |, m = -1
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To find the matrix representation of L, we need to compute the following relations:

1 1 k
LI =5(L,+L )1 =35L (1) = J_i'(»

1 A
L0y = 5(L,+L)I0) = 7D +1-1) (64.7)

1 1 k
LI-D) = 5(L,+L )1 = 3L = 72|0)

If we choose the standard basis

1 0 0
[ty=]| O 0= 1 Fly=| 0o (6.4.8)
0 0 1
then the matrix representation of L _is
(O 1 O)
L = % P01 (6.4.9)
LO 1 OJ
Similarly, for Ly we have
1 ih
Ly = g;(L.-L) 1) = 10
' ih 64.10
1 DO =3 L -L)I0 = S (-DH-1) (6.4.10)
1 it
L-1) = 5:(L,~L )1 = - .T’ilo)
Hence,
0 i O
L= o - (64.11)
y - o +
f2 0O i 0
Also, for L, we have L |1} = &|1), L |0) = O,and L |-1) = -A|-1); thus,
tr 0 0
L.=#0 1 0 (64.12)
0 0 1
For L? we have L2|1) = 242|L), L2|0) = 2A2|0), and L2|-1) = 2A2|-1); thus,
t1 0 0
[2=25210 t O (6.4.13)
0O 0 1

6.5. What is the probability that a measurement of L will equal zero for a system with angular momentum

1
t
of one and is in the state :/ﬁ 2 |?

First we will find the eigenvectors of L, for / = 1 in the basis of L ; i.e., we want to find the eigenvectors and
eigenvalues of

010

L.=—=| 101 (6.5.1)
SN}
L2 010
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Assuming that the eigenvalues of L, are fid/ /2, the secular equation of L, is
-A 10
det)] 1 -A 1 |=-A(AR-1D+A=2A-A3=0 {6.5.2)
A O B )

Hence, A = 0, iﬁ and thus the eigenvalues of L are 4/ or 0. The cigenvector corresponding to the eigenvalue
his

a

ID, =1 b | = all)+b[0)+cl-1) (6.5.3}
v

where |a|? + |b|2 + |c|? = 1is the normalization condition. Therefore,

610 a

a
2
f 010 c c
I b=.2a I a+c = f2(a+b) I b= J2¢ (6.5.5)
From (6.5.51) and (6.5.5111) we obtain b = J2a = J2¢; thus, using the normalization condition, we have
1
at+2a?4a? =1 = a= 3 (6.5.6)
Hence, the eigenvector [1), is

1
1 1
D, =53] /2 |=301)+20)+-1)) (6.5.7)
l

Similarly, the eigenvector corresponding to the eigenvalue zero is

a
1
|0)‘=§ b | = a|l}+ b0+ c]-1}

(6.5.8)
C
where g, b, and ¢ satisfy the normalization condition and
010 a
51101 b | =0 (6.5.9)
010 c
or
I =0 Il a+c =20 (6.5.10)
Therefore, a2 +0+a2 = 1 = a = 1/./2. Finally, the eigenvector [0}, is

I 1
IO)_\-=J§ 0] =Tz(ll)—l—l)) (6.5.11)

Also, the eigenvector corresponding to the cigenvalue —f is

a
Dy =1 b | =all)+bl0)+cl-1) (6.5.12)
¢
where @, b, and ¢ satisfy the normalization condition, and
010 a a
5 101 b |==hl b

(6.5.13)
010 c c
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6.6.

or

I b=-J2a I a+c=-J2b m b= -3 (6.5.14)

Thus, b = -2a = —.f2¢; using the normalization condition we obtain a2+ 2a2+4g2 = | = a = 1/2.Hence,
1

D, = 3 ﬁ = 31— S0+ F 1) (6.5.15)

So, we can write

1 1
looy === ; = T (ID+2100+311) (6.5.16)
In the basis of the eigenvectors of L, we have
oy, = x(ll(x)ll}x + X(OI(JL)IO))r + (o)1), {6.5.17)
We compute the terms separately:
2+ 2
liet 6.5.18
X(I) 2ﬂ(]+2.\/§+3) ﬂ { )
1 1
x(OIC(.) = J2_8 (1-3) = _ﬁ (6.5.19)
and
-2
o _ = 6.5.20
Ll = Zﬁ (1 2.2+ 3) »,/_4 { )
The probability that a measurement of L yields zero is therefore
i
P.(0) = |{Olm)|? = 3 (65.21)

Apply the operators L, =L, +iL, and L =L - L ontheeigenstates of LZ and L, (I!m)) and interpret
the physical meaning of the results Follow the stages (a) Find the Hermitjan conjugate of L,. (b) Cal-
culate the norm of L |!m) and L_|Jim). (c) Calculate the eigenvalues of L” and L, for the state L, |lm)
and L_|im).

(@) The Hermitian conjugate of L, is L, = L, —iL}, butsince L] = L, and L = L, wehave L] = L_.
(b) The norm of L |im) is
L timd|? = (L Jmyty (L,|Im)) = (Im| (LL,) lm) = {Im](L_L,) |Im) (66.1)

L L, = (Ly~iL) (L,+iL)=L2+Ly—iL L +iLL =L2+L2+i[L,L] = L'~LI-hL, (662
Thus, substituting L_ L, , we obtain
(L Mm)|? = {ml(L_L)\mY = {Im|(L 2L ~KL_ )\im)
= A+ D) —m2-m] = R2[I{I+1)-m(m+1)] (6.6.3)
The norm of L_|/m) is |L_IIm)|? = {mIL, L_|im). Again,
LL = (L+iL)(L,—~iL)=L2+L2+iLL ~iLL = L[2—L2—i[L,L)=L?~L2+hkL, (6.64)
Hence. we obtain
ML [im)|? = {Iml(L2 = L2+ AL, ) lm) = A2 [L([+1) —m?+m]
= R+ 1) =m(m=1)) (6.6.5)
(¢) First consider the commutation relations:
(L3, L,] = [L? Lx+iLy] = [L3 L] +i[l% Ly] =0 (6.6.6)
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and
(L, L] = [LZ,Lx-iLy] = [L2,Lx]—i[L2,Ly] =0 (6.6.7)

This means that L2L, = L L2 and L2L_ = L_L?. The eigenvalues of L? for L |/m) and L_|Im) are

LA(Lmy) = L, (L*)im)) = B 1(1+1)L,|Im)

(6.6.8)

L(L_{Im)) = L_(L*)my) = #1(1+ 1)L_|im)

Thatis, L_|/m) and L_|Im) are eigenstates of L? with eigenvalues #2/ (! + 1). Before we continue to calculate
the eigenvalues of L, note that

[L,,L] = [L,+iL,L]) = [L,L])+ilL,L] = —ikL -hL, = -AL, (6.6.9)
Hence, L L -L L, = -#L, and L.L, = L, L +#L,. Similarly,
(L.,L) = [L,—-iL,L] = [L,L])+il[L,L] = -ikL +hL = KL (6.6.10)

Therefore, L L —L L = AL and L L_ = L_L,-#L_.Thus, we can calculate
LLjmy = (L,.L,+AL,)m) = L,LJim)+hL |Im) = maL jim)y+hL |im) = (m+1)ALJIm)y (6.6.11)

and also

LL \Imy= (L_L -hL_)|Im)y= L_L\m)y—AhL_|im)

mhL_|lm) — AL_|Im) = (m— )RL_|Im) (6.6.12)

We see that L |/m) and L_|Im) are eigenstates of L, with eigenvalues (m + 1) /i and (m - 1) %, respectively.
To conclude:

(L m)| = 2SI+ 1) —m(m+ 1)

(6.6.13)
L]l’--"’")]l = hJI(I+ 1) —m(m-1)
L2(L,|tm)) = K2 (I +1) (L, lIm))
{U (L_limy) = A2l I+ 1) (L_|Im)) (6.6.14)
and,
L (Lm)) = % (m+1) (L {m))
{L: (L Mtmd) = h(m—1) (L_{im)) (6.6.15)

From (6.6.14) we see that L_|/m) and L_|/m) are proportional to |/m') (note that m' is distinct from m). From
(6.6.15) we conclude that L, [/m) is proportional to [/ ', m + 1) and that L_[/m) is proportional to |/ ', m - 1);

thus,
Lilmy~il,m+1); L imy~|l,m-1) (6.6.16)
Recall that the norm of | ', m + 1) and L_|/m) is 1; hence, from 6.6.13 we get
Ljilmy = 2 JI(I+ 1)y —m@m+1) |L,m+1) (6.6.17)
Lim=aJlil+1y-m(m=-1) |l,m-1) (6.6.18)

So we see that the operators L, and L_ allow us to “travel” between the eigenvalues of L2 and L,. Note also
that L, ) = Oand L_|I,-I) = 0.

6.7. Compute the expressions {(/m|L2|/m) and (Im| (L, Ly ) |Im) in the standard angular momentum basis.

We begin by representing L, and L, using L, and L_:

L +L. L, -L
Lx = 2 and L" =

(6.7.1}

Keeping in mind that

Llmy=#aSI(I+1)—m(m+1)}, m+1) (6.7.2)
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and

Ljmy=tJl(I+1y=m(m=-1) |, m—1) (6.7.3)

the operator L? can be written as

1 1
L?=g3(L,~L)?=3(L2-L? +2L,L_+2L_L,) (6.74)
The terms L2 and L? do not contribute to the expression {/m|L?|!m) since
{(zmuzum) ~{tmjl,m+2) =0
UmiL? |m) ~ Umill, m=2) = 0 (6.7.5)
Thus to compute (/m|L2|{m) we consider only the contribution of L L, and L, L ; that s,
1 ]
UmiL2imy = 5(mi (L, L_+L_L,)imy = 3 1{mi(LL_yltm)y+ {m (L_L,)|Im)]
= g[Jz(z+ D —m(m—DmL, L, m- D+ JI{A+ 1) —m(m+ 1) ({mL_|, m+1))]
2
= E[A/I(JJr Y —m(m—1JI(I+1) —m (m—1)Umilm)
+ 1+ D =m(me ) JI(T+ 1) =m (m+ 1) Im|im) )
2
= %—[l(l+ D-m(m-1}y+I(I+1)y —m(m+ 1)}
= R2[I(I+1) —m?} {6.7.6)
We turn now to compute {/m| (L,L) |im}. Using the operators L, and L_, we obtain
1 LTI
LA,Ly = 7 (L,+L_}y(L,-L ) = 1 (L2-L*-L L_+L_L)) (6.7.7)

Once again the terms of L2 and L? do not contribute to (/m| (L,L) {{m); thus

(Im| (L,L)|Im) = 411.[(1m|(Lf—LE +L_L,-L,L y|m)] = $[<1m|(L_ L,-L,L)|im)

1
= i Wml (L_L )Y limy = {my (L .L_) lim))

=‘%[,\/l(l+ D -mm+ DUmL_ |l,m+ )=JI(I+1) —m(m— DY {ImlL |1, m— 1)}

2
=%[Jl(1+l)—m(m+l)Jl(!+1) —m(m+ 1) {m|im)

42
~Jl+ D —mm- DS+ 1y —m(m=-1){Imlim) ] = lﬁzm (6.7.8)
6.8. Consider a particle with a wave function
V(X y,z) = N(x+y+z)elt+y+rrall (6.8.1)

where N is a normalization constant and o is a parameter. We measure the values of L? and L_. Find
the probabilities that the measurements yield: (@) L? = 24%, L_ = 0; (b) L? = 242, L, = h; (0)
L? = 242, L, = -h. Use the known relations

Y (8,0) = —Jgtsine et ¥Y(8,¢) = -Ecose Y;'(6,0) = —Jgtsine i (6.82)

First, we will express W (x, y, z) in spherical coordinates:

x = r sin® cos¢ y = r sinB sin¢ z = r cosB (6.8.3)
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where 2 = 27 + y? + 22, So,
W (r,0,0) = N[sinB(cosd +sind) + cosB] re~r’/e* (6.84)
We write y (7, 6, ¢) as a multiple of two functions y (r, 8, ¢} = R(r)T (0, ¢) where R(r) = Nre—r*/%* and

T(6,¢) = Za,m Y] (8, 9) = sin® cos¢ + sin@ sing + cos® (6.8.5)
im

The coefficients a,, are determined by
a,, = {ImlT (8, 9)) = _[ (Y7) (8, §) d6 dp (6.8.6)
Using the properties of spherical harmonics one can prove that
T(8,9) = ﬁ [0 =¥y =51 +¥h] +ﬁ—"¥?
=E[(1+i)Y;‘—(1—f)Y:+ﬁY?] (6.8.7)

To compute the probabilities, we must normalize the function T (8, ¢); we denote the normalized function by
T'(8, ) = PT (8, ¢), where

2
BZIT* (8, 0)T (8, 6)d6 dp = BZTR(2+2+2) = 4nf? = 1 (6.8.8)

orf = 1/.J4n. Hence we have

1
T'(6,¢) = ﬁ[(l+i)Y;l—(l—i)Y:+ﬁY?] (6.8.9)

i RS TR M. -5 (-0 SRR [ opu) | PR
1NUs, ¢ prODADUILICES dIrc COINPUICA a8 LOLOWS.

(@) ForL? = 2h% and L, = 0 we have
1 2 1
P =[,0TH? = %./i =3 (6.8.10)
() ForL? = 242 and L. = # we have
a2 1-i% 1
P =1, 1T Y2 = %l T3 (6.8.11)
(c) ForlL? = 2fi%? and L, = —#i we have
1 +1)? 1
P=|1-1r"H? = _.7%_ =3 (6.8.12)

A symmetrical top with moments of inertia /= / and /, in the body axes frame is described by the
Hamiltonian

H—L(L2+L2)+LL2 6.9.1
=27 b+ by + gty (6.9.1)

Note that moments of inertia are parameters and not operators. L, Ly, and L, are the angular momen-
tum operators in the body axes frame. (a) Calculate the eigenvalues and the eigenstates of the
Hamiltonian. (b) What values are expected for a measurement of L, + Ly + L, for any state? (c) The
state of the top attime ¢ = U 1s |/ =3, m =0). What 1s the probability that for a measurement of L,
att = 4nl /A we will obtain the value #?

(a) We begin by writing the Hamiltonian as

n I L, (1L 1 (6.9.2)
H =37 (L2+L}+LY +(§7;‘ﬁ)’“3 =ark *(ﬁ‘ﬁ)’“f '

z
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6.10.

where L is the total angular momentum. Recall that if A is an operator that has the eigenvalues A;
(i =1,...,n),the eigenvalues of f(A) (where f(A) is a function of A) are f(X,). Therefore, the eigenvalues
of the energy are

2 (11N,
Ey = 37t 0+ 04 37 < 57 J#2m (6.9.3)

So the eigenstates of the Hamiltonian are those of L? and L,, i.e., the spherical harmonics ¥7' (8, ¢) with the
eigenenergies E,, .

() Measuring L,+L,+L, for the top, we find the top at eigenstate Y7 (6, ¢); that is, a measurement of
L +L +L, yields

L,+L L ,-L
(Y7 (8, 0)| (L +L,+L)I¥] (B,0)) =(¥] (8, ¢>|( +—5—+L, )lyr(e.«m
= (Y] (8, 9)IL.IY] (8,0)) = Am (6.9.4)

(¢) Thestate ofthetopat t = Qis y(t=0,86,¢) = Yg(B, ¢), which is an eigenstate of the Hamiltonian, A meas-
urement of L, for this state yields zero, and since it is an eigenstate of H, the top will always remain in this

ctata ’rharﬁfnra the nrobability of the measurement of £ is Zero.
staie. 1nerciore (né provabLiily Of e measurem 7o 1§ zer

The spherical harmonic functions are defined by
Y7(8,0) = C)'P (cos@)e™ (6.10.1)

where C ;" is a normalization constant and P;" (x) are the associated Legendre functions defined by

||
d }
Pi (0 = (=" a'x|m|Pl (0 =P (6.10.2)

Compute the function Y7(8, ¢) for m = 0, 1.

d
Consider the Legendre polynomial P, (x) = x; so ax ( P, (x)) = 1.Therefore, relying on (6.10.2) (see the
Mathematical Appendix), we have

Pl(x) = P1(x) = J1-x (6.10.3)
Similarly, P? (x) = x; thus, using (6.10.1) we obtain
Y} (8,0) = C,P)(cosB)e® = C|sine’ (6.10.4)
Also,
-1 -1, -i¢ 0 0
Y, (8,9) = C, sinbBe Y, (8,¢) = C, cosb (6.10.5)

Using the normalization condition we arrive at

Id¢I (Y1'(6,0) Y7(0, ¢)sinb db=1 = qu;J. (CY) cos? 8 do= | (6.10.6)
0 ! 0 0

0

3
or, -2 (C?)ZJ cos? B d(cos8) = 1, thatis, C? = J%.Similarly,

¢]

Lo rr R N R

C,=C, = LJ a‘¢>J sin® e'* sin® e'? sind dﬁJ = LGJr sin® 8 aGJ = J&n (6.10.7)
0 ]

Finally, we have

Y] (6, 9) = F cosB Y, (8,0) = «/gfc sinBe' Y, (6,0) = j% sinBe ™ (6.10.8)
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112
6.11. Solve the eigenvalue equation L2Y (8, ¢) = Ak?Y (6, ¢), and find the eigenvalues of L2. Use the
expression for L2 in spherical coordinates.
2
_ﬁ2|— 12 a— + .l i( smﬁr\é:\
Lsin®6 207 \in€55

We begin by substituting the expression for L? in the eigenvalue equation, so we obtain

19 )
{ - a(sine %)}Y(Q,Cb) = =AY (8, 9)

—
-
(=N
i~
[
S
e

L} =

{6.11.2)

sin" 9 37,2 *5ind 9o\ °
We solve this equation using the variables separation method; thus we substitute ¥ (8, ¢) = ® (¢) © (8) and get
G d-(D o d ( do )
sn’e 497 * 5in6 a6\ *"® Gg ) = ~APOO®) (6.11.3)

o O(8) P (9) .
Dividing (6.11.2) by — 35— we obtain
sin 6
1 d2d sinB df 40\ 2 (6.114)
CTJT (Tk —BJ+7\sm9=0

dze sin® d do
sing == 70 + A sin B

]
We now have two parts: The first, g 07 is a function of ¢ only, and the second, o 78
is a function of 8 only; the sum of these parts yields zero. Therefore, each of them must be a constant by itself. We

set
1 did ,
> de? = -m? (6.11.5)
and
sin@ 400 2
o) d—L d—J+x sin“ 8 = m? (6.11.6)
The solution of (6.11.5) is
P(p) = eme (6.11.7)
= 1, thus, m

To qualify as a periodic function, ¢ (¢) must satisfy the condition ® (¢ +2n) = @ (¢); that is e?™'m
must be an integer number, m = 0, +1, +2 Now (6.1/3.5) can be expressed in terms of x = cos8, where
(6.11.8)

Substituting into (6.11.6), we now have
(6.11.9)

(6.11.10)

Note that under the transformation x — —x, (6./1.1() is unchanged. This means that the solutions of the generalized

Legendre equation are either symmetric or antisymmetric in x. Consider the equation for m? = 0
(6.11.11)

d ,, dO
Sla-»T]+re =0
represented by a power series; so © (x) = *Zaﬂx". We leave it for the reader

i =y

Assume that the solution ¢
that hy cinhets tuting we ghta
\-lUDllt \vl Ie VY W VLR

tn chinegs
MU LIV VY BIIGR UJ
Z ((s+n+2) (s+n+ l)amzx"”— [(s+n) (s+n+1)-A] (a,,xH")) =0 (6.11.12}
n=10
Hence, each coefficient must vanish, and we have
= [(l+a)y(s+n+1)-Ala, (6.11.13)

(s+n+2)y(s+n+1)a,, , =
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6.12,

or
(s+n)(s+n+1)y—-2A
a =
n+l (s+n+2)(s+n+l)a" (6.11.14)
The function @(x) is boun = } {8 = 0), sothe condition (s + 1) (s + # + 1) — A = U must hold for . That

ogunded g1 v
UulLiaci at A
1!

is, A must be of the form A = /(/+ 1), where [ is an integer number. Hence, the eigenvalues of L2 are 21 (1 + 1) .
The solution of (6.11.11) can be represented as
1 d!
0,(x) = s (-1 (6.11.15)
Similarly, the general solutions of (6.11.10) are
orr < DT g 4T ;- (24"
[(X) 211[ ( - ) dt’(“’l'"l) (.X - 1) = (- 1) (l ) d\,mP (X) (61116)

Consider a particle in a central potential. Given that |/m) is an eigenstate of L2 and L _: (z) Compute the
sum AL? + AL}?. (b) For which values of [ and m does the sum in part (@) vanish?

(@) The uncertainties AL2 and AL? are defined as

AL = (L} -(L)? ALE = (L)) - (L}>2 (6.12.1)
L,+L_ L,-L_
Using the raising and lowering operators L, and L_, we write L = 3 and L, = 3 . Therefore
we have
1 1
Li =3 +L*+L L +L L) L = -5 (L2 +L?-L,L -L_L) (6.122)
So
( /L?+L_\
(LY = {miL Jim) = {m|| Jiimy =0
L,-L. (6.12.3)
(L) = {Im|L |Im) = (Im]( )Ilm) =90
since
Lim)y =i fl(l+1) —m(m+ )|, m+ 1)
(6.12.4)
L H{m)y = fiJl(I+1)—m@m—-1yl, m—1)
Similarly, we can compute
]
(LD = {m|L2im) = 7(Im(LI+L2 +L L +L L, )|im))
lll,ll 2, 2\:1,\ 1 a4 T r r o\ LY f6.125)
= 4(\lm|( LHL_pppmy+NimL, Lo+ bib+)|lm)J !
Relying on the properties of the raising and lowering operators we have
L2)imy ~ I, m+ 2} L2|im)~|l, m-2) (6.12.6)
We also have
LL |imy=L,(RJIU+D —m(m=1)|l,m=1)) = K2[L (+1)-m@m=1)}|Im) (6.12.7)
and
L_L|m)=L_ B+ D) —m(m+ DY m+ 1)) = B2+ 1)—m (m+ 1) }|Im) (6.12.8)
Thus we obtain
LH =R+ 1y —m(m-=1) +1(I+ 1) -m(m+1)] =282[1({+1) —m?} (6.12.9)
Similarly,
(L2 = (LY = 282 [1(1+ 1) —m?] (6.12.10)

Finally, we have
ALZ+ ALY = (LD —(L)2+ (LY —({L)? = 4h2[I(I + 1) —m?} (6.12.11)
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(by Using the result of part (a), we see that AL?+AL? vanishes when /(I+1) —m? = 0; that is, m? =
I (I+ 1). Using the fact that m and / must be integers, we conclude that this condition is satisfied only when
=m = 0.

Consider a system with a state function
2
Y (r,t=0) = NE exp| — (6.13.1)
2r,

where § = x+iy; N is a normalization constant and r, is a given parameter. It is also given that the
eigenfunctions of L2 and L, are the spherical harmonic functions

3E 0 3z -1 3E*
Y (xy.2) = - Rrr Yi(xy z) = J%t; Yy (hy.2) = - jgn, (6132

(a) What are the values obtained from a measurement of L? and L,? Find also the probability for each

meacurement (b)Y Write the three ejgenfunctione nf 12 and I  correenondine to the aiven enherical har.
INCASUITINCHN, (W) ¥V il il Uaivl CIgCILGHC ULILS Ol WG L VOIS pONGRIIE (O w0l SVl spnatiivar fia

monics. (¢) Find the values that are expected from a measurement of L,. What is the probability for each
value?

(@) Consider the operators L? and L. They operate only on the part of the function that depends on the angles ¢
and 6. Note that we can write y as

8 —r2 1
yrt=0) = - TNr exp | 5,3 Y (x,y2) (6.13.3)
0

Hence, we see that the possible values in a measurement of L2 and L, are 242 and #, respectively, with a prob-
ability of 100 percent (since L? and L. operate only on Y,I (x, ¥, z), which is an eigenfunction of these
operators with these eigenvalues).

(b) Consider a system K™ of which the x', y', and z' axes are parallel to the x, y, and z axes of our system, In this
systemn the operator L, is similar to L, in K thus the eigenfunction of L. is also the eigenfunction of L, with
exchanging of X' = y; ¥ — z; ' = x. The eigenfunction of L_ is

Yl (x,y, 2 = 35 3_X+y 6.134
K6, = ~Jigr = i (6134)

Therefore the eigenfunction of L, is
3 y+iz 3 y+iz (6.13.5)

1
(Y,(x,)’,z)),_r oy r——x2+y2+22 =

Since L2 commutes with L. and L, (Y:) . is an eigenfunction of L_;
Similarly,

o [3x - 3 y—iz
(Yo), = J;t, (V) = «E—n)’ - (6.13.6)

(¢) Following parts () and (b), we use the expansion theorem to write (see Chapter 4)

2
v (r,1=0) = Nr exp{—;—r(z) N—( (Yo), +J.[(Y )L + (Y)L]) (6.13.7)

Consider only the part of y that is an eigenfunction of L, and L?:

it is also an eigenfunction of L2.

. i i}
P(x,y,z) = ot( (YQ)L_."'AI—/Q [ (YII)LA,— (Y:)L}] ) (6.13.8)
. . 1 1 1
where @ is a normalization constant, { P| P) = a?| 1 +t5+5)= 1 = a= J_i Therefore,

i ] _
Pxov2y = = (¥h, += [, - (¥h, ] (6.13.9)
ﬁ X ﬁ X X
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The values expected from the measurements of L, and L? are therefore as follows: For L2 = 2A2and L, = 0,
I I
the probability is ’((Y(‘,)LJP)F = 5.For L2 = 2h?and L, = #, the probability is [{ (¥)), 1P>|2 = 3. Finally,

, o 1
for L2 = 242 and L, = —#, the probability is i((Y;)LiP)iz =7

6.14. Consider a particle in a spherical and infinite potential well:

0 0<r<a
Vir) = o a<r (6.14.1)

(a) Write the differential equations of the radial and angular parts, and solve the angular equation. (&)
Compute the energy levels and the stationary wave equation for / = 0.

(@) We begin by writing the Hamiltonian of the system:

p? 'Y:
H=5-+V(r) = -5, V2+ V() (6.14.2)
where V2 in spherical coordinates is
1 9 1 1a(_ a) 1 9 19 L?
Visg 5—’2(7') +r_2[;|;§ 99 sinb 3¢ + sin” 0 54; T rar S S (6.143)
Thus,
A2 19 L2
2m ra 2(r) + 2+v(r) (6.14.4)
The differential equation for the stationary wave function y(r, 9, ¢) is
A2 19 L2y
Hw = —z——-— (rw) + =+ V(v = Ewv (6.14.5)
' Zmryy 2 (7y) Imr? T ' 7

Itis evident that [H, L?] = O; hence, we write y (r,6,¢) = R_, () ¥, (8, ¢) and obtain

2 Y, (6, 2 L2Y;] (e,
2ﬁm (r 9 o~ L 1Ry (11 + R, (r)L2Y; {6, 9)

5 R, (NV(rNY](6,0) = ER (rY(8,0) (6.1456)

Since Y,’rl (0, ¢} is the eigenfunction of L2, 1.2 Y,m (6,0) = A2 (I+1) Y;" (8, ¢). Hence, the radial equation is

fizl 0° fi?
“amr e FRu (1 + [ mat U+ 1) +V(r)}R,,,(r) = ER, (r) (6.14.7)
(b) For! = 0 we have
#2109
2mra 2[I'R"0(r)] +V(r)R”0(r) = ER”U(I‘) (6.14.8)
We denote R, ,(r) = R(r). For r > a, the function must vanish [because V (r) is infinite]; therefore we have
for0<sr<a:
2 32
~Tmr 53 (PR = ER() (6.14.9)

90U
We substitute I/ (r) = rR (r); hence, “3marr = EU(r), or

g ‘2’+ 2:2Eum =0 (6.14.10)

The solution of (6./4.10) is
U(r)y = A cos (kr) + B sin (kr) (6.14.11)
where k = 2mE/ #”. A and B are constants that can be determined using the boundary conditions:

I The value of U vanisheson r = 0: U(r=0) = [rR(1]|,_, =0
I The value of U vanisheson r = a: U (r=a) = [rR(r)]|r=d
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Thus, from condition [ we have U/ (0) = A = 0, and using the second condition,
U{a) = Bsin(ka) = 0 = ka = nxm (6.14.12)

we obtain

(6.14.13)

Finally, to compute the value of B we use the normalization condition of the wave function R(r):

sin {(kr)
ur) B——— 0%<r<a
R(ry = —— = (6.14.14)
! 0 otherwise
Hence,
sin? (k
J. IR {r)|?4nridr = '[41532"_l r( ) ridr = 41[32'[ sin (kr) dr
0 0 0
AmBT 1 e 2p2
= n L:gosxsin X+35x l = 0T .B = (6.14.15)
kL2 PANER v/ a
1
so B = ona’ Thus, for / = 0 we have
11 ( (2mE)
yi(r,8,¢) =R(r) = mrSIH 77 (6.14.16)
6.15. Consider the Hamiltonian of a three-dimensional isotropic harmonic oscillator:
! 24p2 42 mw? 24424 22
H =5 (pi+p+p) + 5 (P +yi+29) (6.15.1)

(@) Write the Hamiltonian in spherical coordinates. (b) Find the eigenfunctions of the Hamiltonian in
spherical coordinates. (¢) Find the energy eigenvalues.

{a) We begin by writing
2

2 2
p2aplep? = _f,,Z(.a?_ 'a'a"" é_a__) = _R2V? (6.15.2)

which, in spherical coordinates, becomes

1°() 1 a(, i) 12
-#2V? = —ﬁ2|: __8r2 + 55030 sin® 30 +r2 sinzem (6.15.3)

12 3 1’
Using L2 = -f2 mem( smej,g)+ - 7,m—| we arrive at
Y7 5in"9%%
29°(r) L2
~#2V2 = - = 3,7 += (6.15.4)

In spherical coordinates, the Hamiltonian is therefore

At 19 (r) L2 mw?
“2mr a 2mr2+ 2T

(6.15.5)

{6) The angular dependence of the Hamiltonian comes only from L?; therefore, writing the eigenfunction in the
form ¢ (r,0,¢) = R(r) Ym (6, ¢), we have

Hy = ﬁ2~——y’ LI U)oy 0, 0) + LR (Y = E 156
\V——zm 7 (r (r))+ 2 ,(,¢)+2r (Y, =£Ly (6.15.6)
or

me Y] g R+ 1)

HR(NY] = -5, ="705 (rR() + 5,5 RV + = R(r)Y + 5 rZR(r)Y = ER(NY (6157)
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We get the radial equation

A2 1 d2 All+1) mo’
—Imrarz TR()) + l:—z(m—f“)'+7r2 R(r) = ER(r) (6.15.8)
r
o A2 1d2u (ﬁ21(1+1) ) ()
By substituting u# (r) = rR(r), (6.15.8) becomes Imrant\ ot ur) = ,or
dt 1(l+1) miw? 2
[d_,i- (,.2 L. F2 P+ ,’; ]u(r) =0 (6.15.9)
s mm? 2mE .
We denote B =77 and €= 27 ;50 we obtain
d? 1(l+1
[g,—z— (:; )—B2r2+e]u(r) =0 (6.15.10)

d?
Note that for large r, the dominant part of (6.15.10) is ( - B2r 2)u(r) = (). Therefore, for large r,

uir) ~glr) eBris2
LA (S

-
N
[
Lh
[N
by

—

8
Let us compute

du d

G = TGt Brgebin) = (g€ ¥ Pge b1 Brge iy Brrtgetriny

= (g"- Bg-Prg + Prrig) e’ (6.15.12)
Hence we have
" : I(+1)g 2
[g -Bg-2Prg + g - = -Pirig - Eg] B2 =0 (6.15.13)
The differential equation for g(r) is
N , I{+1)
g -2Prg'+ (e-Pg-—>7 g =0 (6.15.14)

We substitute g(r) = r‘Za”r" (for g, #0),50 g' = Zan (n+s)rs*7*-1 and

a=0 n=0

g = Za”(n+s)(n+s—l)r”"‘2 = 2 @, ., (n+s+2)(n+s+1)re+n (6.15.15)

n=0 n=-2

Note thalrﬁ2 = Za”r“"'2 = Zanzr“”,so (6.15.14) becomes

n=0 n=-2

w -

Lan+2[(n+s+2)(n+3+l) - l(l+l)]r“"+Lan[—2B(n +5) +e-Blr*"=0 (6.15.16)

n=-3 n=0

For n = -2 we have [s(s—1) —={(/+1)]a, = 0. Since a,#0, it follows that s = I+ 1, For n = -1 we

have [(s+1)s—-I(l+1)]a, = 0.Since s = I+ 1, we obtain @, = 0; so
e-3p-2B(n+1)

n+z = (n+1+3)(n+1+2)—1(1+1)an

a (6.15.17)

(¢) The eigenfunction must be bounded for large r, so we must demand that g(r) be a polynomial of a finite degree;
i.e., we set a, = 0 for a certain n,:

e-3B-2B(n,+1)
(ng+1+3)(ng+1+2) -1(1+1) -

-
(=
[
)
b,
Co

~—

ore = 3f+2B(ny+!) = ZmE,l /#h2, Thus the energy eigenvalues are

z T (Gen)
E, = 2m[3|3+2|3(n +01 =57 [3+2(n +0}] = S0 +!ho (6.15.19)



118

6.16.

6.17.

ANGULAR MOMENTUM [CHAP. 6

Consider the infinitesimal rotation operator:

U (6, i) fi (6.16.1)
Find the rotation operator for a finite angle 9, Hint: Define 46 = 0/N for N — oo,

Let |y} be a state vector in a coordinate system O. The state vector in coordinate system Q' that rotates around
fi by an angle 0 (relative to O) is

W) = [Ug(dd, &)1 ) (6.16.2)

Hence the rotation operator for a finite angle 0 is Up(8, i) = [U4(d8, m1Y. Defining d0 = 0/N, we arrive at

i 9
Ux(®, ) = lim(l FL-# ) (6.16.3)
N e
a ¥
Recall that Jim (1 + ]Tl) = ¢% so using this identity we finally obtain
— o0
r. 1 i1 A \¥ (i A

U0, f) = ,J‘L“,.,Ll’“ﬁ 7—0)] = exp|-zoL i) (6.16.4)

(a) Refer to Problem 6.16 and compute the rotation operator around 7 = ¥ for / = 1. (b) Use the rota-
tion operator obtained in part (a), and find the representation of the eigenvectors of L in the standard
basis of L_.

0 A s
(@) Consider the rotation operator U, = exp (-—;L : nj. For # = y we obtain

i {1 4
Up = exp(—ﬁﬁLyJ = Z;!(—EBLJ (6.17.1)

n=10
Let us compute
0 - 0 0 -1 0
Ly Ll 0 i d 1 0 -1 (6.17.2)
== |1 -1l =" -
7 A7.
2 0 i 0 /2 01 0
-1 0 1
LN 1
%) =3 0 -2 0 (6.17.3)
1 0 -1
and
0 2 0 0 -1 0
(12)3 20 2l 0 alb (6.17.4)
ﬁ = ——] - = - = z . .
/8 0 -2 0 /2 01 0

s0 we obtain

-1 3 E(R) S (R

( l) 92n+l (Ly)z had (_1)11 2n
=1-i 2 (2n+1)! % Z—W (6.17.5)
n=1
Note that
. O (-1)" 6! = (~1)" 92"
sin® = (Tr)H-lT'— cosf-1 = Lo (Z)n)! (6.17.6)

n=10 n=
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therefore,
L, Ly
Up = 1 i sinB3 + (cos®-1)| 3 (6.17.7)
100 6 0O -1 0 -1 0 1
Ug,=| 010 +% I 0 -1 |-(cos0-1)] O =2 0
001 0 I 0 1 0 -1
[+cos®  sinB I—cosB
2 2
. f2 ] (6.17.8)
_ sin@ cos® _sinf
B J2 J2
1-cosB  sinB I + cosf
T2 Nz 2
(b) To obtain the eigenvectors of L, by using the eigenvectors of L,, we must rotate the eigenvectors of L. by
0 = m/2; hence, in this case we have
1/2 N VN V)
Up(m/2,3) = | 172 0 -1/J2 (6.17.9)
1/2 1742 1/2
Thus,
T . T, T
i, = UR(}Y)ID 0, = UR(QJ)IO) -1, = Un(i,y)H) (6.17.10)
where
(M () ()
[ = LOJ 0y = L]J 1) = LOJ (6.17.11)
0 0 1
are the standard basis. Therefore,
1/2
I I I
), = | 1742 | = 511 + —=10) + 5-1) (6.17.12)
Vg 2
1/2
~1/.2
1
0) = 0 = —— (1Y = |-1 A7,
103, ﬁﬂ) -1 (6.17.13)
1742
and
VN %0 RN
1 173 | = 21— =10} + 311
D, = - =3 —ﬁl -1 (6.17.14)
I/2
Supplementary Problems
6.18. Prove the following relations: (a) [L, p,] = iﬁZe!}.k P YIL,pl = [L.r¥] =[L,r-p] =0.
k
Recall that /, j, and & can assume the values x, y, and z, and that €, & is
1 ijk cyclic permutation of xyz
= -1 ijk anticyclic permutation of xyz (6.18.1)

€:1j/c -

0 otherwise
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6.19.

6.20.

6.21.

6.22.

6.23.

6.24,

6.25.

ANGULAR MOMENTUM [CHAP. 6

Hint: By definition, L = rxpanduse L, = (rxp), = ze,ﬂ(r‘. p;-

(]

Prove the following relations for the angular momentum operator: (@) L2 =L L p-#4L +L2 (b)
(L, L,] = 2AL, .

Show that if the matrices of L, and Ly are real, 1.e.,
UmlL I'my* = {dm|L |I'm') (lmlLyll'm')* = (ImILyll‘m') (6.20.1)
then the matrix of L_ is imaginary, (Im|L_|'m'}* = (Im|L [I'm"). Hint: Recall that [L , L] =ihL,.
For a system with an angular momentum / = |, find the eigenvalues and eigenvectors of L xLy + LyL .
1 1
Ans. |v)) = [1,0); |vy) = :/-5 (11, D+ =) vy = :/—i- (=i, 1Y+ 1, -1))

In a system with an angular momenwum ! = 1, the eigenvalues of L, are given by [+ 1), |0}, and [-1), where
L|+1) = ip1) L 1) =-A]-1) L, =]0) (6.22.1)

,
The Hamiltonian is H = 719 (Lf—L_‘f,), where (@, is a constant. Find (z) The matrix representation of H in the
basis |+ 1), [0), and |-1}; (b) the eigenvalues and the eigenvectors.
Ans. (a) H+ 1) |0 D)
1 0 OYHID
H=ﬁwOLO 2 OJIO)
0 0 1/

(b) The eigenvalues and eigenstates are wyf (|+1), 20,7% ([0} ), and w A (|-1)).

Prove that in spherical coordinates the operators L , L ,and L, are written as

d
L = —?(sinq) 8%)+ cosd cotB 8_(]))
13 d d
L, = 7(cos¢ 3¢ — sin¢ cotd B_q)J (6.23.1)
2]
S ED

The Hamiltonian of a three-dimensional isotropic harmonic oscillator is
1 , , 1 .
H = z—m(pf+p§+pf) +3mo (x2+y2+2?9) (6.24.1)

1 1
Calculate the following commutation relations: (a) [H, L,], (B) [H, H_],(¢)[L, H ), where H, = 2_mpf + imwzzz.

Ans. (a)[H,L]) = 0;(b) [H,H,] = 0;(c)[L,H,] = 0.

Prove that the time derivative of the mean value of the angular momentum operator L is given by

‘% = —{rxVV) (6.25.1)

where V is the potential. What can you say about the time derivative of L for a central potential?

Ans. Foracentral potential, VVecr = rx VV = 0, and the time derivative of L vanishes; thus, the eigenval-
ues of L™ are time-independent.
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6.26.

6.27.

Use the following data to compute P, (x): {a) P,{x) is a polynomial of the fourth degree; (b) P, (1) = 1;{c)

1

P, (x) is orthogonal to 1, x,x2, and x%, ie,, J x*P,(x)dx =0 for k = 0, 1, 2,3. Hint: Choose P, (x) to be of

T -1

4
I
the form P,(x) = ZC"Xk' Ans. P,(x) = 3(35x*+30x” +3).
k=0

Let |y) be a state function of a certain system and Uy (6, n) be a rotation operator with angle @ around n {n is a
unit vector), so that [y} = ULy} is the state function rotated by angle @ about n. Using a matrix representation,

show thatfor/ =1, U, (8,n) = ex —iGn - L ) (this operator is the rotation operator for all values of /).
e Pl 3 pe



Chapter 7

Spin

7.1 DEFINITIONS

Spin is an intrinsic property of particles. This property was deduced from the Stern-Gerlach experiment.
The formal definition of the spin operator S is analogous to the angular momentum operator (see Chapter 6),

o) = S(S+ DA (7.1)

|o) being an eigenfunction of $”and § (S + 1) the corresponding eigenvalues. We define also
g p

§ =8 +5.+8, (7.2)
where §,, S, and S obey the following commutation relations:
(S, Sy] = ihS. [Sy, 5.1 = iAS, [$.,8,] = iﬁSy (7.3)
Analogous to angular momentum, the quantum number of spin in the z-direction is mg; = -§, -S+1,...,+§,
and
S.la)y = mhj o) (7.4)
7.2 SPIN1/2
For particles (an electron, for example) with spinof 1/2 we have m; = + 1/2 and two distinct eigenvectors

1 1
of S and § . denoted by |+§) and I_§>' These eigenvectors are called the standard basis, where

1 3., 1 1. &1
S'lt3) = 3 145) S.Jt5) = 25 3) (7.5)

As its name hints, it is this basis that is usually used, though alternative bases are of course available. Any wave
function in the spin space can be written as a linear combination of the standard basis.

7.3 PAULI MATRICES
The Pauli matrices ¢ = (o, o, ¢_) are defined using

A
S = 50 (7.6)

) e ) el )
c,= Lo o, = i 0 G, = 0 -1 (7.7)

S being written in the standard basis. The commutation relations of the Pauli matrices are

where

{o.0,] =2io. [0,,0,] =2ic, (6,0} =2io, (7.8)
Other useful relations for the Pauli matrices are
6.=0,=0 =1 (7.9)
and also
(6-A)(o-B)y = (A-Byl +i6- (AxB) (7.10)

where A and B are two spatial vectors,

122
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7.4 LOWERING AND RAISING OPERATORS

Analogously to the angular momentum, we define the lowering and raising spin operators:

S, =S +i8, § =5,-iS, (7.11)
where
1 1 1
S,+3) =0 S J+5) = hi-3) (7.12)
h) LI A 'l') h) Lo 0 7.13
+|_2> - |+2 6|—2> - ( - )

7.5 ROTATIONS IN THE SPIN SPACE

To find the representation of a state |ct) in a given coordinate system that is rotated by an angle 6 around an
axis in the direction of the unit vector & (see Fig. 7-1), we compute

1

joy = exp(—ﬁeﬁ : S)la) (7.14)

Fig. 7-1

Thus, the rotation matrix is

; cos (6/2) L -i¢
v, = exp(—iez‘z _ S) _ r ) sin (0/2) e 7.15)
\h 7 sin(0/2)e cos (6/2) ) ]
Notice that for ¢ = 0 (rotation around the z-axis) we have
cos (6/2) -sin(6/2)
U, = .. (7.16)
R sin (6/2) cos (8/2)

which is a rotation of /2 around the z-axis. The rotation of a spin vector differs from that of a spatial vector.
This result is unique to the spin vector and can thus be used to define a spin vector. A spin vector is called a

spinor.

7.6 INTERACTION WITH A MAGNETIC FIELD

Consider a system consisting of particles with a spin S. Applying a magnetic field B will introduce an addi-
tional term to the free Hamiltonian H,,, so that

eB
H=Hy+H, = Hy+—-8 (7.17)
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Solved Problems

7.1.  Calculate the commutation relation [G,, 6,], where j = x, y, z and G, are the Pauli matrices.

We begin by considering the Pauli matrices:
1 0 4
0
(6,0, =00,-0,0, = {

1
ol
=[ : O,J-[ — 9]=2i[1 0 J=21‘02 (7.1.1)
0 - 0 o -1

-

Therefore, we see that

Also,
(o Y1 o) (1 oYo =)
0,0,] =006.-0C0C = -
omed=aemeo = o Lo ) o a ko)
= O ! — O - = 2[0"_ (7.1.2)
i 0 -i 0 '
and, finally,
.61 coo g0 | L 00 1] 01(1 0
P TR T 0 -1, 10 1 oA 0 -1
—( 0 ]\—(0 —l\—zzﬁ (7.1.3)
L=t o) (1 0o)7 7
So we conclude that
[o,0) = 2ig,,0, (7.1.4)
where
1 ijk have cyclic permutation
£ = -1 ijk have anticyclic permutation (7.1.5)

0 otherwise

1 1 1
7.2.  Using the basis vectors of §, eigenvectors, calculate S‘-|+§) and § fl_i) (i =x,y,2), where |+§) and

i~l> are the eigenvectors of §_ with eigenvalues +A/2 and —£ /2, respectively.
2

The basis vectors of S, eigenvectors are (see Summary of Theory, Section 4.2)

Al 0 1 il 0 — A1 0
S =3 § =3 =z 2.1

S = 25 . Denoti el Dk O i
and § = >0 . Denoting by |+2)= 0 ,|—§)= p |» we write

LY 1) A A
ol o)=21)=22 (7.2.2)

1
Sx|+§) =

1 Kl 01 AN Aol
S5} = 5[ 1o = 5[ 0 J = 5l+5) (72.3)

Note that §, produces a transition between the eigenstates of 5, , so that when S operates on one eigenstate it pro-
duces a multiple of the other. Similarly, for § :
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7.3.

Al O —i 1 O hi 1
SR =32l o f\o)T2 )7 2F (7.2.4)
2P Y O i
1 nl v - U Al -t ol
8,3 = QL i 0 JL 1 J = 5[ 0 J =~ 31+3) (7.2.5)

And so, as expected,

1 oY 1) & 1) &
S =20 -1 Jo)=2 0 )=2"D (7.26)
a0 1o Al 0 h
8.5 = i( 1 OJ( I )=‘§{ 1]= ~ah %> (7.27)

(a) If the z-component of an electron spin is +#/2, what is the probability that its component along a
Airaction ~' that forme an ancla 8 with tha ~_avic aouale 25 /7 or % /D {gpo D o T NDPRY WWhat 10 tha
uu\.;\.«uuu s uiaLl 1uviiiin all a.uslu UOoVYILLL UV STAaALD b\.luaxo TILS & VI TR & \OUG ) 5 = L \ } ¥y ual 1dx uic
average value of the spin along z'?

b

X
Fig. 7-2
] . s
(a) The present state of the electron is |+ '2'); the spin operator component along z' is
R
S.=S8S-n-= 36N (7.3.1)

where n is a unit vector along z'. In our case, n = X sin@ cos¢ + ¥ sin0 sind + £ cos O and therefore,
§. = §, sinBcosd+ S, sin@sing + 5, cosH (7.3.2)

The eigenvalues of S, are +%/2 or - /2, and the eigenvectors of S, with the basis eigenvectors of §, are

1, 1 1
[+3) = ak3)+bl-3) (7.3.3)
1, il
S.143) = +3k+3) (7.34)
and
1. 1 !
3 = cl+3) +dl-3) (7.3.5)
1., _ k1,
S:b5) = —5-3) (7.3.6)

where a, b, ¢, and d are complex constants. By substituting (7.3.2) and (7.3.3) into (7.3.4) we obtain

1 h ]
(S, sin cosq)+Sy sin@sin ¢+ S, cose)(a|+§)+b|—%)) = §(a|+§)+bl—%)) (7.3.7)
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Using the known relations

1 Ao 1 ol
S+3) = 3k3) { S,F3) = 313
I ih1 1, ik 1
r¢q>=7ky S5 = 53 (7.3.8)
I A1 L A1
S+3) = 33 $.13) = —5+3)

so (7.3.7 ) turns into the form

i 1 1 kbl . | 1 1
-{-I { sin9c05¢)|—%) + isin@sin 9|3 + c059|+§)} +75 { sin@cos¢|+3) — isinBsingh+3) - 0059|—§)}

_ ﬁ[ i ! )
=3 a|+2)+b|—§) (7.3.9)
Hence, we obtain

a sinf cos¢ + ia sin@ sing — b cosO = b

PRI T AP (7.3.10)
[ @ cost +osint cosp — (o SInd s = {/.2.045

(1+cosB)b 1 . 1+ cos0)?
Of 4 = 58 (cosh + i5mB)" [+3) must be a unit vector; thus, la]2 + |62 = 1and |b|2( 1+ ( Sinze—) =
1, so
: ssin( §)eos(§)
. 2 sin’| 5 Jcos | 3
,_ _sin® _ sin@ 2 2 =,2(9)
b2 = T4 20038 = 7o = 70 sin’{ 3 (7.3.11)
4cos 2 4cos 3
We choose b = ¢i%sin (8/2); hence
A 8Y) (6
_ (1 +cos®) (9) o _ 2cos kzjsmkz ) (9)
a = Toipee sinl 5 et = —— g = cos{ 3 (7.3.12)
so we obtain
1, ey 1. (0 1
|+§) = cos{ ;3 |+§)+sm 3 e“’l—i) (7.3.13)
Since |_%)‘ is orthogonal to |+%)‘ we have
WAL (9) . (9)ﬂ¢_ . (9)_w
(+2|—2) = ccos{ 3 + dsin 5)et = 0=c¢ = —tan( 5 Je d (7.3.14)

1
Note that |-5)" is also a unit vector, so lc|2 + |d|2 = 1. Substituting ¢ we obtain [tan’ (6/2) +1]|d]2 = 1,

or ld? = cosz(O/Z). We choose d = —cos (8/2),and so ¢ = —e~'*sin (8/2). Therefore,

1, A | 03 1
|_§> = —sin| 5 e—:¢|+§)+cos 3 |_§> (7.3.15)
The present state of the electron represented by the basis eigenvectors of S is
1l 11, 111, ey 1. (6y 1,
|+§) = (+§|+§)I+§) + (+§|—§)|—i) = cos(§)|+§) + sm(i)e"q’l—i) (7.3.16)
Therefore, the probability that the spin component along z' is +A/2:
+h 1112 2 O
Pl 5 ) = |'+5+3) = cos'{ 3 (7.3.17)
and the probability thatitis —£/2;
f L1 1 .26
P(—i) = \ (—§|+§) = sin (5) (7.3.18)

1 1
(b) The average value of the spin along z' is (S.) = (+§|S:.|+§). Using the relation

S:.|+%) = S:.( cos(g)H%}' + sin(g)e"ﬂ—%)') = g(cos[g)H%)'— sin(g)e"ﬁ-%)') (7.3.19)
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we obtain
($.) = (+31S.1+35) = (+2|2(Cos(g)[+;)'—sin(g)e-lﬂ_%)')
Aro ey 11 7 e 111
= 5[ cos{ 3 Jergha) - sin 3 Jeotazl5) |
= ;[cos(g)cos(g) - sin(g)e“"sm( )e-fﬁ)]
= g[c"sz(g)‘ Sinz(gﬂ = ﬁcgse (7.3.20)

Consider a particle with spin § = 1/2. (a) Find the eigenvalues and eigenfunctions of the operator
S .+ Sy where S, is the spin operator in the i-direction (/ = x, y, z). (b) Assume that |o) designates the
eigenfunction of § + 5, that belongs to the maximal eigenvalue, and that the particle is in state |o) . If
............ tha armis i fln.«\ A eants o Tdhat ara tha ornliis nd thaic mcnhablilieno? .0 Tha naminla 3

WO 1ICAadsULc L11c Dl)lll il 10 2 UllCLLlUll, Wllal aire ine VOIUCD ana LllCll pxuuauu lllCD \L} 111G Pd.l uLvlic is lll

state |o) . Find, if possible, the direction n in which the spin measurement will with certainty yield the
value §, = /2.

(a) We begin by writing 1he matrices

Rl 0 1 Rl O —i Rl 1 0
S =3 S.=3 S =3 74.1
v 2[10] ) 2({0} ~2[0—1J (74.1)
thus,
. ﬁ( 0 -1 ]
A =85 +8 = 3l L n (7.4.2)
\ & T 1 v /
To find the eigenvalues of this operator (A% /2). we must solve the equation det [A — (A%/2) 1] = (; that
is,
A S ( f_z)‘* , : .
dct{z[ Y J} =0= 3 AP (1-0) (1+)] =0 (7.4.3)

So, A2—2 = 0, which yields A = +./2, and the eigenvalues of A are +h/.J2. The eigenfunction of A cor-
responding to the eigenvalue + £/ /2 is

ker{z( -2 l_l]} ker [ -2 l_’) (7.4.4)
1 +1 —f 1+ —Aﬁ
1 \
That is the state a|+§) + bl—i), where
So1-iY 4 0 ~La+(1-Hb=0
= = . (7.4.5)
1+i -2 N> 0 (1+i)a-2b=0
2 1 1 ) . o s
Thus, a = ;b For al+3) + bl—i) to be normalized we must satisfy the condition |a|2 + |b|? = 1; hence,
( lﬁ . 1)|b|2 -1 (74.6)
+1i
1 1 _l' e—in/4 . l
which yields b = 1/42 and a = F1- 7 < T Therefore, the first eigenstate |v) = a|+§)
—in/4 l

+bi—2) isfound tobe |v,} = 7 |+2) + Jﬁl—2> Similarly, for the second eigenfunction of A correspond-

ing to the eigenvalue -/ 2 we obtain

ker{g[ f21-i J} =ker( 2 l_i} (74.7)
1+ ﬁ 1+ ﬁ
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1 1
Or|v,) = cl+§) + dl_§>’ where

A FA R IR v
q/\d “lo) T la+nesfd=0 (748)

1+ N L het \

2 1
so0 ¢ = —liﬂd. The normalization condition of |v,) yields d = 1/J2 and ¢ = i e3n/4/ 2. and
e3n/4 ]
therefore, |v,) = 7 |+2)+J_i 2) so finally
h
(S, +S) v = _A/_ilv'> (S, +8)1vy = ﬁh}z) (7.4.9)
(b) The maximal eigenvalue of §, + S, is +#/./2; thus,
e n/4
loy = jv)) = N I+2)+J_l 2) (7.4.10)
The values that can be obtained from a measurement of S_ are +A /2. The probability for S_ = A/2 is
ﬁ ~n:i/4]2 |
P(E) = (+§Ia> o 3 (7.4.11)

Therefore the probability for §. = —f/2 is

W) =1-#5)-1 (7.4.12)

(c) If the measurement of an observable gives only one result, then the state of the system is an eigenstate of that
observable; thus, the state |or) is the eigenstate of a spin operator in a certain direction (the one we wish to
find). As we have seen in part (a),

ra
7::5 r4

oy = fvp) = 7 I+2>+ﬁ 2) (7.4.13)

|v,) is also an eigenstate of §, + S with the elgenvalue #/ 42 that is,
(s,+s)l = ﬁIDO == (S +S5) ey = 2|a> (74.14)

Hence, lar) is the eigenstate of (S + S o) /2 and the measurement of (5, +5) /.ﬁ always yields the result
fi/2 . Note that (S,+S)) / J2 is the spin operator in the direction of the spatial unit vector n = & + 9 where
X and y are unit vectors in the x and y directions, respectively.

7.5.  Consider a particle with spin 1/2. (a) What are the eigenvalues and eigenvectors of § , Sy, and §,7(b)
Consider a particle in eigenstate S . What are the possible results and their probabllltles 1f we measure
the z-component of the spin? (¢) At t = O the particle is in the eigenstate § , which corresponds to the

eB
eigenvalue —# /2. The particle is in a magnetic field and its Hamiltonian is H = ed.- Find the state

at 7> 0. (d) If we measure S, at 7 = |, what is the result? What is the result for a measurement of §, at
t = t,? Explain the difference in f,-dependence. (¢) Calculate the expectation values of §_and . at
it =1t.

1

(@) Consider the matrices §,, §,, and S_ written in the basis eigenvectors of 5.,

0] =40 sy o
s_\.=§( 0 So=3 ., S.=5 . (7.5.1)

0
7\ l ) \ { } 7\ U -1 /

1
First we shall determine the eigenvectors of §_. For eigenvalue +£/2 we have |+§); = [ (l) ] and for eigen-

1
value —i/2 we have I_§>r = [ (l) ] The eigenvalues of S, are AA/2, where det (S, - (£A/2) 1) = 0
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“ti Vo0 3 -

or A2 -1 = 0. Therefore, we obtain the eigenvalues +# /2. The eigenvector corresponding to the eigenvalue

that is,
-A 1

L al=0 (7.5.2)

. 1 1 l a
+h/2 is |+§)\' = a|+§)_ + h|—§). = , S0

Rl 0 1 f
s |+2> 2|+2> = 2{ o J[ Z) = i( :] (753)

1
Solving (7.5.3) we obtain b = a. Now, |+§) must be normalized, so we set the condition |af* + |b|? = 1
Substituting for a we obtain

|
262 = 1= a=b=—¢
2

(75.4)

Thus, the eigenvector of §. with eigenvalue +4/2 is
3 == L= R e ) 7.5.5
= =) -5 e
2 ﬁ 1) T AT, (7.5.5)

1 L . . .
The other eigenvector |—§) (with eigenvalue ~f /2 ) is obtained either from orthogonality and normalization

conditions (since the two eigenvectors belong to different eigenvalues), or in the same manner in which the
first eigenvector was obtained, We will follow the former course:

1 l 1. | ¢
3 = <‘I+2):+bl—§):=( d ] (7.5.6)
and
ety = @ 2 L4y (7.5.7)
A 2 2 v l/ﬁ »/i ﬁ -
giving ¢ = —d. Using the normalization condition, |c|? + |d|2 = 1; we can choose ¢ = —-d = 1/.J2 and
obtain

1 1 1 1 1 1
-3 = ﬁ( N J = 72(I+§>:—|—§>J (75.8)
Similarly, the eigenvalues of S, are (%/2)A, where
hkl e L)
d - = 7 .
ctLS )= LZJL _ -AJ 0 (7.5.9)

!

or A2—1 = 0; so the eigenvalues of S, are also +#/2, and the eigenvector corresponding to the eigen-
value +%/2 is

] 1 1 a
l+3h = al+§>:+b|—§):s[ b ] (7.5.10)
where
1 h i h fol
&va=3(q 31(?}=s(?)=swwy (7.5.11)
< S N U AN e N

so ia = b. Using the normalization condition ja|?+|b|2 = 1 we obtain 2|h|2 = 1, so we can choose
h = l/ﬁ and g = —z'/ﬁ. And finally, we obtain

1 L( L I )
l+3), = 5 —il+3). + -3, (7.5.12)
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, . . 1 1 1 1 1
Using the orthogonality relation of l_§>v to '+§>,v we have '_5)}‘ = ('1+§)3 + d,_i): and
(—33). = d)f b ] ic , 4 (7.5.03)
(—si+5). = (¢ =-—4+—= = S
ks L 1742 J 22

2|¢|? = 1. Thus, ¢ = 1/J2 and

]

]

so d = ic, and from the normalization condition we get |c|? + |d|?
d = i/ .J2; therefore,

Ly _ _1_.( L. )
'*§)>. =5 |+2):+1I—2): (7.5.14)
As we found in part (@), the eigenstates of S, are
NS TSN b L)
2% =5 [+3). + 3. -3}, = 5 [+3). ~ 3. (7.5.15)

1
If we measure the spin component in the z-direction, the state of the particle will be either |+§):, giving

1
S, =#h/2,0r I—:'-Z):, giving §. = —A/2. The probability for §. = £/2 is

h 1 112 1
P 5 - :(+§Ii§)1 = 5 (7516)
andfor S, = -h/2 is
k 117 1
P -5)= :(+§|t'2')‘ =3 (7.5.17)
o ] 1
Note that if the initial state is either |+§)_l or |——§)A we obtain the same results.
At ¢ = 0 the particle is in initial state:
bo L d )
|+2>I = «/ﬁ( |+ 2); + |—§): (7.5.18)

d
We want to find the time evolution of this state, so we use the Schrédinger equation, iﬁal; = Hy. As the

Hamiltonian is time-independent, we write Wy (r, s, 1) = ¢, (r, 8) §,(1); substituting in the Schrédinger equa-
tion gives

a0,(1)
0,(rss) —5, = (0 HY(rys) (7.5.19)
Assuming that ¢,(r) is of the form ¢,(r) = e-¥7* where E is a constant, we obtain
E(Dl(l', S)e—iEl/ﬁ = ¢2(1)H¢|(l’,5) = E(bl(l',S)(bz(f) = ¢2([)H¢|(I',S) (7520)

and we must require that ¢,(r,8) = E¢, (r,s). In other words, ¢ (r, s) must be an eigenfunction of the Ham-
iltonian H. Note that

eB
H = "5 = (const}S. (7.5.21)

Thus, the eigenstates of / are similar to the eigenstates of S_, where the eigenvalues of H are the eigenvalues
of §_ multiplied by the constant eB/mc . Therefore,

1 eBh
lw,(r.8)) = [+3). E=5- (7.5.22)
and
1
|wl( r, s, t)) = e—lfBl/lm(‘l+§>: (75.23)
Also,
1 eBh
[y (r,s)) = I—§): E=-3 - (7.5.24)

which gives

. 1
[Wy(r, s, 1)) = efebrmez) (7.5.25)
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Therefore, each state of the particle can be written as

‘ 1 1
|W(r,5,0) = aly,(r,s,0) )+ BIWy(r, 5, 1)) = ce=B2mel43), 4 Ber/2me|—3), (7.5.26)
For our system, the initial condition is

| 1 1 1 1
y(r,s,t=0)) = ﬁ(“i);*‘l—i)z) = al+3). + Bl-3), (7.5.27)
hence o = B = 1/.2, giving
1 1 1
|\|j(r’ s, t)) = ﬁ(elﬂBl/er |+§>:+ eJFBI/Zm(' I__i):) (7528)

A measurement of S, or §, will give either +#./2 or - /2. The probability for a measurement S, = +#/2 is

A[4)-

and for S, = —#/2 we have

2 g(eBtl)
cos { 3= (7.5.29)

—ieBt, /2me re8r, /2me
(e e )

1 2 1
X(+§|\|I( rst)) =3

{ A) I 1 |2 [ —ieBit, /2mic ieBe /2me |2 . Q{EBI!\\
P{-3) = |avinsa))) = [a (e eI | = sin {500 (7.5.30)
Similarly, the probability for . = +4/2 is
ﬁ’) 1 2 1 —1e8t, /2m 2 1
P:(+2 = | (+3lW(r s, 1)) = ‘Ee ! =3 (7.5.31)
and for S, = -/2,
h 1 2 1 emsamd? 1
Pz(_i) = z(‘il‘l’(ry 5,t|)> = lﬁe b2 = 3 (7.5.32)

We can calculate the expectation value of S, in two ways: the first by calculating y(r,s, 7){5,|y(r,s, #,)}
and ihe second by summing over the products of the possibie vaiues muitipiied by their probability. in the see-
ond possibility,

h ( ﬁ) h (ﬁ)_ﬁ[ z(ﬂ) .z(e_‘i’_lﬂ_f_’l (fﬁ)
(S = +2Px +3 —2P)r -5)= Cos | 5, )—sin"\ 5= /| = 5 cos{ = (7.5.33)

Similarly,
f ﬁ) h f Al
s = +5e[+5)-3(4) - 53

eB
Note that (S} is not conserved in time; this is because [H, S,] = ——[5,5] #0, while () is conserved

) =0 (7.5.34)

since

eB
(H#,S] = - 15,81=0 (7.5.35)

7.6.  (a) Provethat [§2,S,] = Owhere §? = §2+ Sy2 + 52 . (b) Show that the eigenvectors’ basis of S, diag-
onalizes $2. Find the eigenvalues of §2.

(a) InProblem 7.1 we found that [0, 0,] = 2i0,;[0,0,] = 2i0,;and [0,0,] = 2i0,; therefore, recalling

that S = 16/2 we write
[S. 8,1 = ihsS, (5.8,1 = iAS, [S..S,] = iAS, (7.6.1)

Hence,

535 = [S2+57+525.] = 3 (528.] (7.62)

where i = x, y, z. We see that
[$2,8,] = S25,-8.5}+55.5,-S55.5,
=5,(55,-5,5) +(55.-585)S, = S§,[5,51+[S5,5.]5, {76.3)
so [$2,5,] = 0. Also,
(84,51 = §,[5,5.]1 + [S,5.15, = -ifi(5,5,+5,5,) (7.6.4)
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and
(53,81 = S,[5,5.]+ (5,818, = -1h (55, +S5S) (7.6.5)
And finally,
{Sl, SS] = E [3125 S:] = ih (S)-Sr+ $.S ) -ih (nrny S_VSx) =0 (76 ‘
(b) To obtain the matrix representation of S2 we calculate it, using the matrices of S, Sy, and S, in the basis of
the eigenvectors of §_; that is,
Rl 0O 1 il 0 —i i1 0
S, =5 S.=3 S.=5 7.67
‘2(10) -‘2(:'0 2o -1 (76.7)
hence,
£\2
§2 = 82+82+82 = (ﬁ) (62+02+0}) (7.6.8)
Using the known result that 67 = 1, we obtain
AR 3a2 1 ]
8t = 3(:) 1= T( Po (7.6.9)
N LS T k U 1 }

We see the 2 is diagonalized (in the basis of the eigenvectors of §_), From linear algebra we know that if a
vector basis diagonalizes the matrix of an operator, then the basis is comprised of the operator’s eigenvectors,

1 1 . .
ie., |+§) and l_i) are also the eigenvectors of §2. In other words, we conclude that if the commutation relation

of two operators is zero, then we can find similar eigenvectors for both of them. To find the eigenvalue of S?

J
1
So the eigenvalue of |+2) is 3A2/4 , and the eigenvalue of |- 2) is

L_ar 1 oY o) _ 3w o) 1
Szl__z)_ 4(0 1J[IJ= 4{l}= 7 -3 (7.6.11)

1
Thus the eigenvalue of |~ §> is also 3/£2/4. Note that if we set § = 1/2 to be the quantum number of the

1
for the eigenvector |+§) we calculate

snp- 20 0] 1]

L0 1T )00 s

a

e

total spin, then (like the angular momentum theory) the eigenvalue 3A2/4 can be written as 225 (5 + 1).

1 1
Find the result of applying the operators S, +iS_ and §,~ iS, on the eigenvectors [+5) and l_§> of §,.
What is the importance of these operators?

We begin with the operator S, + S and calculate

' 1 11 o1 AY 1
(S, +iS)1+5) = S+3) +iS |+5) = 5 |—§)+ i3 l|—§) =0 (7.7.1)
and
i 1 1
(S, +iS )I— y = S, 2)+1S| 2) =3 |+ 2)+ i5 Jil+3) = Al+3) (7.7.2)
For the operator §,— IS, we have
ek 1.1_?}1(.{1)_1_1
(S;=iS) +3) = §,14+3) - iS,+3) = 51-5) = | i3 Jil-3) = Al3) (7.7.3)
and
1 . 1 R h . 1
(S i8,) 39 = S5 = iS5 = 531+ 3) = (15 ) (-l 3 = 0 (7.7.4)

To conclude, we have

I 1 1 ! 1 1
S5 =0 S_1+3) = Al-3} S, k3> = fil+3) S35 = (7.7.5)

(7.6.10)
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where §,=§ +iS and §_ =S5 - iS . The latter relations justify calling S, a spin-raising operator, since it
increases the spin in z-direction from —#/2 to +#% /2. Similarly, we call S_ a spin-lowering operator, since it
lowers the z-component of the spin from +#/2 to —%/2. §, and S_ allow us to jump from one eigenstate of S,
to the other. They are very useful in spin calculation.

Using the operators S, and §_ compute the matrices S, and §_; show that §? = §2+ §2+S7 is diag-
onalized in the basis of eigenvectors of S .

The spin-raising S, operator and the spin-lowering S_ operator are defined as
S, =8, +i§, S =8,-15, (7.8.1)
Hence, we can write
1 1
S, = §(S++S_) S, = 5;(85,-5) {7.8.2)

Therefore,

1 1
§? = 82+82+ 82 = ST+ (S, +8)?-7(5,-8)?
1 1
=S}+Z(SE+S+S_ +85_5,+52) —Z(S}—S+S7—S_S++SE)

1
=S87+3(8,5.+8.5,) (7.8.3)

To find the matrix representation of S? we compute

edy = (520055, 25,50 Jody = sitedyeLs.s ey o Ls s o)
SI+2) = | ST+3(85,5.+5.5) |+2) = S,|+2)+ZS+S_|+2)+2S;S+|+2)

AY2 1 A 1 h2 A2Y 1 3a2 1
- (512 e3sipro=(5 S ea = Fp (7.84)
And also
1 1 1. 11 1,1 1
Szl—i) = (S}+§(S+S_ +S5_8 ))[—5) = §2- i) +§S+S_ |—§)+§S_S |—§)
AY: 1. A 1 CI AN | At
= (f) |—§)+§S~l+§)+0 = (T+7)|_§> =7 (7.8.5)
Therefore,
1 1
3 B3
7/ AN
| 1> 3h2 0
s 2
2 4 3/ 1 0
§ = = — 7.8.6
SRR 786)

which is diagonalized.

For a particle with spin 1/2, compute in two ways the expectation value of i$,5,S,, where the
. L O L o . n ¢ o

particie wave function is :/-5U+§) +|—§)): (a) using S, and S_ operators, where §, = §, +iS§,

and §_ = Sx—iSy; (b) in a direct way.

(a) Consider the matrices S, and S_:

1 1
S, = 3(S,+5.) S, =5;(5,+S5.) (7.9.1)
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Therefore,

] 1
=iS, 5,5, = g7(5,+5) (5.-5.) (S, +5.) =3(S2-5,5_ + 5.5, ~5§2) (5, +5 )

1 R
=g(S}-8,8_8, +5.52-525, +5,§2-85.82+5 §.5 -5 (7.9.2)
Recal] that
1 1 I 1 1 1
S5 =0 S.3) = fik3) S_l+3) = fl-3) S_l3) =0 (7.9.3)
Hence, | |
S5 = 0 S?h+3) = 0 (7.94)

Therefore, all the cxprcssions in A that contain S2 or §? do not contribute to the expectation value, that is,

@ = 303 alisss (Do r b))

= llegiren)s ssosss s wper b (7.9.5)
It can be seen that
S_5.8. I+;1§> = Al %) $ 88 |- %) =0 (7.9.6)
and also,
$,5_S, |+%> =0 S, 5.8, |+%> = fi3|+%) (7.9.7)

Substituting in (7.9.5) we obtain

oo mlen oy
\A) = 16 L\\*zl*\‘ 2L

(b) The matrix representation of ;§ 8.8, in the standard basis is

X X

SR IR S S H SR 6
(Va5 )+ )

1
The particle wave function in the standard basis is T( |+2) + |- 2)]5 ﬁ( : ] and, therefore,

A

o (o ) 1) w )
{(AY = Ts (1 I)L - JL lJ=]—6‘(l l)k | J:O (7.9.40)
7.10. Consider the commutation retations:
[S,8,1 = ihS, (7.10.1)
[S.S,] = hS, (7.10.2)
[S,8,] = ihS (7.10.3)

v
Given that §,, S, and §, are Hermitian operators with eigenvalues +£/2, find the matrix representa-
tionof S, §, and S. in a basis where S, is diagonalized.

Note that S, S, and §_ each have two eigenvectors and that they are Hermitian operators; thus we conclude
that their matrix representation is 2 X 2; so,

a, b a, b a, b
S, = [ P ] S, = [ 2o J S. = [ P ] (7.10.4)
¢, d, ’ ¢, dy €3 dy
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We want to express the matrices in a basis in which §. is diagonalized; thus we write

£/2 0 Al 10
S, = =3 7.10.
: [ 0 —h/2} 2[ 0 -1 ] (7103)

Substituting §, and S, in (7.10.3) gives

Al 10 a, b Y & a b Y1 0 (o b,

2[ 0 -l ][ ¢ d1]‘2[ c, d, L 0 (-1 =ik ¢, d, (7.106)
All @ b a, -b, } | a, b,

n ~ _ .

2{[ -, —d,) [cl —d, e ¢, d, (7.10.7)

0 -ib, )

Vg 00 ) e dy)

or

Thus, we obtain

1l
—
I
e
.
~
—
il
[

(7.10.8)

. o 0 -ib, 0 ey
S, is a Hermitian matrix; i.e., §] = § ,or| | = . Therefore, b, = ¢, = o, Hence,
7 : Y ic, 0 by 0
0 —-ia a o
s= .7 s.=| | (7.10.9)
" 0 ’ o d,

Substituting S, and S), in (7.10.2) gives

[ 0 a1 o) (1 o) P
2llier 0 Lo ) Llo a1 )lier 0 )] T o g ) (7.10.10)

1 ; —i a, « o
2‘{ O e 0 e }= i M S ! (7.10.11)
i 0 —ia® 0 o d, o 0 o' d,

Thus, we obtain
s =[ _{"“J s =[ 0 ‘IJ (7.10.12)
io® 0 . a

or

Finally, we substitute S, and §, in (7./0.7) and obtain

(() g\(@ _!'g\(ﬂ_ia

[ 0 —ic ) N i )
Lo o iam o )| s 0 | Y (7.10.13)

Sz 0 Sila? 0 iR 1 0 [ TR n 1 o
- = = = — 7.10.14
( 0 —iIaPJ { 0 ilaPJ 20 1) .0 —af? 40 -1 ( J

Thus, |a|2 = A2/4. If we choose 0. to be areal positive number (¢ = A/2), we obtain the standard representation
of §,,S,,and S

A t - t
O - B I 71015
"\ | } "\ { V) } L v-=i

or

7.11. Using the Pauli matrices prove: (a) (6-A) (6-B) = (A~ B)l +io- (AxB), where 6 = (0, G,

)
G,), 1 is a 2x2 matrix, A =(A,, Ay,Az), B =(B,B,B,); (b exp(";—n . 0): cos (0/2) 1-
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R R 1 .
in - osin (8/2). Recall that we can expand an operator A in a Taylor series, et = 2’? (A)" (see
n

Chapter 4).

(@) We begin by considering the Pauli matrices:

Gx:(o l] 0¥=(9"’) o‘=(10] (7.11.1)
1o T 0 0-1

0 A, 0 —iA, A, 0
C-A=0,A+0,A +0,A. + A -
0 iA, 0 0 -A,

A 7.112
A +iA, (7.11.2)

SO

Similarly, - B = . Thus we obtain
B + JB
A, A —iA, B, B -iB,
(6-A)(c-B) = : : . “
A +iA, -A, B, +iB, -B,
) [ AB,+AB +AB, +iAB —iAB, AB,—iAB,—AB +iAB, }
AB. +iAB,-AB, —iAB, AB, +AB +iAB ~iAB,+AB,
’ . . \
- (A B)l +[ '(AxB_y—AyBj) (AB -AB) +J(A_‘,BZ—A:By) J
(AB,-AB) +i(AB.~AB) i(AB ~AB)

i 0 0 1 0
=(A Bl + (A_{BV—A},B_,){ 0 i ]+ (A,B - AxB__)[ o ]+ (AyB,—Asz)[ Do )

(7.11.3)
Note that
¥ vy 2
AxB =] A A, 4 | o (AB.-AB)x+(AB -AB)y+ (AB -AB): (7.11.4)
B.x B_\' B: “
so that
(6-A)(6-B) = (A-B)l + (AxB)_ic.+ (AxB),ic,+ (AxB), io,
=A B+io- (AxB) (7.11.5)

(b) We expand the exponent as

8 = 1( 8 n
exp| —izn-0 | = 2;;; -izn-C (7.11.6)

Note that

(n.o)" = 1 for even n (i) = { 1 for even n

n-¢ foroddn (—i) (=1) (n-D72 for odd n

Thus we obtain
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e ign-) = 3 [zl 3)1] -i[ﬁ(g)z"” (n-0)]

n=0 n=10
I ’9 (=1~ 9 +
12(2n>1L§ -m- 02(2n+1)' 2 (7.11.7)
Using the known expansions of
_ N o N D
cosQ = (2n)! sinot = Z 2+ ]),a
n=0 n=10

we eventually obtain

. N 0
CXP(—%3H'0') = cos(i)l—in-osin(i) (7.118)

7.12. Consider the eigenvectors of §,, the spin component in n-direction, where n is a unit vector:
n = £ sin® cos¢ + ¥ sin0 sing + 7 cosO (7.12.1)
Find the rotation operator U, where

1 1 1 1
Uglt3) = I+3) Url-3) = -3 (7.12.2)

1 1 1 1
I+§) and |- 5) are the standard bases of S, eigenvectors; |+§)' and |- E)r are the eigenvectors of S

with eigenvalues +%/2 and — % /2, respectively. Recall that

PPN

U /g\
cos( JI+2) + sm( J 0] 2)
e _ 0 1 (7.12.3)
— sin{ 3 e—'¢|+§)+cos 5 =3

1 1 0
We choose |+§) = ( (l) ]and |- 5) = [ | ] so that

i [ cos (8/2) J 1 [_sin(e/z)em)
|+2) = in(0/2)e? - 2) = o5 (6/2) (7.12.4)

(1
l+5)

i
-5

. . . b . 1 1
Assume that the matrix representationof U, is Uy = { a. ); then the condition (7./2.2) UR|_§> = |—§)' can
bhe written as ¢ d

a b ! = (':05(6/2) N a|_ 'cos (86/2) (7.12.5)
¢ d 0 sin(B/2)e'® b sin (8/2)e'®
1 1 b —si a
Similarly, for UR|_§) = I—E)' we obtain [ 4 J = [ S;g:?gi);; J; so finally we get
U =| 4@ b | _ cos (8/2) —sin(B8/2)e"'®
R c d sin(6/2)e'® cos (8/2)
O N R 0 ~sin(8/2) cos¢ | | 0 +sin(0/2)sing |
_L 0 cos(8/2) J L sin(8/2) cos ¢ 0 J L sin (8/2) sino 0 J

= cos(g)l - sin(e)(coscp)c - sm( )( —sing) o,

Ecos(g)l—ism(e)(u o) (7.12.6)
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7.13.

7.14.

7.15.

7.16.

7.17.

SPIN [CHAP. 7

Zxn
where &t = £ sing + $ cos¢ (see Fig. 7-3). Note that & = ; 7, SO
|2 x nj
i ) 2
ixn = 0 0 | | =-&sin@sing+FsinBcosp =|2xn| = sin® (7127

sin@cos¢ sinBsing cosB
In Problem 7.11, part (5), we obtain the result

6 6 1]
cos(i)l—i sin(i)(&AS) = cxp(—%&-S) (7.12.8)

0
Ug = exp(-wziz : S) (7.12.9)

xn

(3%

where & is a unit vector in the direction of the axis around which we want to rotate the system, & = .nisa

xn|

by

unit vector in the direction of the new z-axis, and 6 is the angle between the new and old z-axis.

Supplementary Problems

Prove that 62 = 02 = G2 = 1. where 1is a 2 x 2 unit matrix.

A A A A A A
Calculate the anticommutation relation [0, crj] R where we defined [ A. B 1+ = AB +BA.

Ans. [o,0], =0.

Show that the matrix of $2 = §Z+ §Z + S2 is diagonalized in the basis of eigenvectors of both S, and §,.
1 1 1

Calculate the value of (S} and AS, (i = x, v, z) for the spinor E(P“”/zlﬂi) N e = 5))_

fi fi h
Ans. (S) = 5 coso, AS, = 3 sing; (S_‘,) =3 cosd, AS, = 5 Cosd; (S.) = 0,A8. =

P~
h{lﬁ“

. . . . Al 10 . .
The matrix representation of §, ina certain basis is §, = 3 . Find the basis and the matrix representation
: 0 -1
of S,and §_.
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~J1
-

ae

1 Lf ] I I 1(, 1 1 A A
Ans. |+3) = 72(|+§>‘+|— 2, ): 3 = E(lﬂﬁ).‘—l— 3, ): S = 52[ ?(1) } 5: =3

Consider the rotation operator
. 0 0
Up(8,&) = exp| 7i-8 ) = exp| 54 0O
By rotating the eigenvectors of S, find the eigenvectors of S, and S, in the standard basis,

1 o 1 ] l 1
Ans. |+§). = UR(B =504=y |+§>: = :/_Q(H'i) +|- 5_))

T
[Re]]
S~
I
<
=
[a o]
[l
TR
=
I
|
T

(7.18.1)



Chapter 8

Hydrogen-like Atoms

8.1 A PARTICLE IN A CENTRAL POTENTIAL

The Hamiltonian of a particle of mass M placed in a central potential V(r) is
P’ 7
=53t V(ry = 2MV + V() (8.1)

where the Laplacian Vin spherical coordinates is
vt o 12 e 1o 13
T orgp * 2\ 992 * 1an 600 * sin? 0342
Comparing (8.2) with the expression for the operator L’ obtained in Chapter 6, we see that H can be written as
519

PYV I A S

C2Mr art  2Mr?

(8.2)

L%+ V(») (8.3)

The three components of L. commute with L, and therefore according to (8.3) they commute also with H:

(HL] =1[HL] =1[HL] =0 (8.4)
We can now solve the three eigenvalue equations:
Hy(r. 6,9) = Ey(r, 0, ¢) (8.5)
L*y(r, 6, 0) = Il + Ha y(r, 8, ¢) (8.6)
L y(r, 8, 9) = mhy(r, 6, ¢) (8.7)

to determine those states that are eigenfunctions of 4, L2, and L, (where we used the notations of Chapter 6).
Using separation of variables (see Problem 8.1), we get

y(r, 6,0) = R (NY,(6, ¢) (8.8)

where Ym is the spherical harmomc function and R, (7) is the radial function (which does not depend on the
quantum number ). Since the ¥, (e, ¢) are normalized by definition:

22T =m

j j (/Y (¥)ysin0dedo = 8,8 . (8.9)
0 %o

the normalization condition is

_[ rR(N|dr = 1 (8.10)
0]

According to Problem 8.1, the radial equation for R (7) is

2 2 2
A21d I+ DA . Vo )]R

C2wrd e VO R
We can simplify this equation by writing

P
~
-
—
o
(L)
L
—

1
R, (1) = ;Un,(r) (8.12)

140
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from which we have

#2d> 1+ 1A
“Smpiar’* 7 +V(r)|U (r) = EU_ (1) (8.13)
Equation (8.13) is analogous to the one-dimensional problem of a particle of mass M moving in an effective
potential V,(r), where

I+ 1) &
Vegs(r) = V(N + ————— 8.14
£f e (8.14)
For the angular part we have the equations:

a n m

~igg¥/(8.0) = mY;(6,0) (8.15)
1 (. .9 1 | m m

~| 568\ 5836 ) + Snza,,2 | V1 (@ 0) = LU+ DY(60) (8.16)

8.2 TWO INTERACTING PARTICLES

Consider a system of two spinless particles of mass »2, and m, and positions r, and r,. We assume the
potential energy to depend only on the distance between the particles, V(r, —r,). The study of the motion of the
two particles is simplified if we adopt the coordinates of the center of mass:

MY+ AT,
Tem = m, + m, (8.17)

and the relative coordinates:
r=r -r, (8.18)

We can then derive the equations (see Problem 8.2):
2

2
~ 3, vy ¥ Oem) = Ecn0(rey,) (8.19)
and
ﬁ2 2 ’
—-L—lv + V() |x(r) = Ex(r) (8.20)
ihasa 11 o tha ccadiinoad manca ~nf tha ¢t martianlan
willlo H I3 LD Fearied rridddy Ul LIIC LWU lJ(ll [ S L (v ]
ny i,
]_L = ml N m2 (8.2.[)

From Eq. (8.19) we conclude that the center of mass behaves like a free particle of mass », + m, and energy
E_,,. The relative motion of the two particles is determined by Eq. (8.20) and is analogous to the motion of a
particle of mass }. placed in a potential V(r).

83 THE HYDROGEN ATOM

The hydrogen atom consists of a proton of mass m_ = 1.67 x 1077 kgand chargee = 1.6 x 107 C, and
an electron of mass m, = 0.91 x 10~ 0 kg and charge —e. The interaction between these two particles is essen-
tially electrostatic, and the potential energy is

e2
Vi) = -— (8.22)
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where r is the distance between the two particles. Since m, is much greater than m,, the reduced mass U of the
system is very close 10 m :

go= mmi?i; m(,( 1 —%) (8.23)
e r P
This means that the center of mass of the system is practically in the same place as the proton; the relative
motion can be identified, to a good approximation, with the electron.
According to Eqgs. (8.8) and (8.12), we may write the states of the system in the form

l m
Yol 0, 9) = ZU ()Y (8, 9) (8.24)
We introduce the Bohr radius a,, which characterizes atomic dimensions:
A’ o
a, = — =052 A (8.25)
pe
and the ionization energy of the hydrogen atom:
Lel 136 ov (8.26)
=——=136¢ )
1T o2
To solve the radial equation for the hydrogen atom, we define p = r/a, and A,, = ,/-E;/E, . The radial
equation (8.13) then becomes
2
d 1(+1 P
[ 27T 2 L, _‘7%1] Ugp) = 0 (8.27)
dp”  p P

where we use the index k instead of n (» = k + /). The radial equation is solved by performing a change of func-

S S

tion (see Problem 8.1):

U(p) = e Mg, (p) (8.28)
and expanding &,, in powers of p:
&(p) = p‘Zqu" (8.29)
q=0

The coefficients C, can be obtained from the recursion relation (see Problem 8.1):

( 2 )q (k=1)! 21+ 1)!

Lol T YT IET
K+ 1/ (K—=g—1).g.(G+i+ 1)

c, = (-1’ C, (8.30)

The solution for R, (p) can be written in the form

2NN (n-I-1H!  _ +
0 =) e« a3l

where L;i(p) are the associated Laguerre polynomials (for detailed information, see the Mathematical Appen-
dix). Some examples of the radial functions are

-r/a,

Ry, 1=o(r) = 2(a) ™% (8.32)

- r —r/2a
R, 2 1=o(r) = 2(24) m(l —g)e 2% (8.33)
4]

~-r/2a,

R - anl
n=2, 1=1N = (2a,) ﬁaoe (8.34)
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8.4 ENERGY LEVELS OF THE HYDROGEN ATOM
For fixed /, there exists an infinite number of possible energy values:
E

(l(+l)2

Each of them is at least (2] + 1)-fold degenerate. This essential degeneracy results from the radial equation’s
being independent of the quantum number 7. Some of the energy values manifest accidental degeneracy. Here
the E;; do not depend on k and [ separately but only on their sum. We set » = k +/, and then

E, =- k= 1,23 ... (8.35)

1 net 1
E = - ’;El = —;x 13.6 eV (8.36)
The shell characterized by 7 is said to contain » subshells, each corresponding to one of the values of /:
I=01,2,...,n-1 (8.37)
Each subshell contains 2/ + 1 distinct states corresponding to the possible values of m,
m=--I+1,...,1-1,/ (8.38)
The total degeneracy of the energy level E, is
n-|
2(n-1
=) (1+1) :("T)"m = n? (8.39)
1=0

If one takes into account the electron’s spin (which can be in one of two possible orientations) then the number
g, should be multiplied by 2.

For historical reasons (from the period in which the study of atomic spectra resulted in empirical classifi-
Aatirne ~f tlea l...nn nknnm.nrl\ tlem srnarimiig o liing nf T awn agonnintard o L lottnno nfslan T nsic nlealnlnasr oo £o11....0
LdllUll UL LT HIHICY UUdTI VO ) LT Vd.llUUD valdod Ul | dlu ﬂDDUlelCU Wllll JICLICT S UL LHIC Lallll dll}lldUCL, dd 1U1TUWD

(/I=0) &5
(I=1ep
(I=2)d
(I=3)ef (8.40)
(I=4) ¢

in alphabetical order

8.5 MEAN VALUE EXPRESSIONS

In the following list we include some mean value expressions of r* that are useful in many problems:

(r*y = rr‘*z [R, (] ar (8.41)
0
(=5 [3n7=i1(l1+1)] (8.42)
2 02n2
r?y = == [5n2 +1=31(I+ 1)] (8.43)
1 1
(3= (8.44)

a,n
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and
N 1

= 8.45
ain® (1+1/2) (845

8.6 HYDROGEN-LIKE ATOMS

The results obtained above originate in calculations for systems of two particles with mutual attraction
energy inversely proportional to the distance between them. There are many physical systems that satisfy this
condition: deuterium, tritium, ions that contain only one electron, muonic atoms, positronium, etc. The results
are applicable to these systems, provided that we properly select the constants introduced in the calculations.
For example, if the charge of a nucleus is Z, then e? = Ze* in all the calculations.

Solved Problems

8.1.  (a) Write the eigenvalue equation for a particle in a central potential V(r), and perform the separation of
variables in the wave function. Obtain the radial equation and the two angular equations. (b) Solve the
radial equation for the potential of the hydrogen atom V(r} = —e2/r.

(a) Consider the Hamiltonian of the system:
A1 0 L?

= Yo
LA e,

+ V() (8.1.1)

We have the following eigenvalue equation:

k21 9 12
“aprgp ) H SRt VO VI 0.9) = By 6,0) (8.1.2)

The three observables H, L, and L. commute. Thus we can look for functions y(r, 8, ¢) that are eigenfunc-
tions of L7 and L. as well. We have the following system of differential equations:

Hy(r, 8, 0) = Ey(r, 8,9 (8.1.3)
L2y(r,0,0) = 1 (1+ 1) y(r, 6, 0) (8.1.4)
and
Ly(r,8,0) = mhy(r, 8, ¢) (8.1.5)
Note that we have three differential equations for y(r, 8, ¢), which is a function of three variables. Since
fa 18 1 &
a
and L, = —iﬁgc—p (see Chapter 6), (8./.4) and (8./.5) can be replaced by
d 1 d L
| 392 * an636 * sint 692 |V 0. 9) = LU+ D) v, 6, 0) (8.1.7)

and

2y, 8,0
—:w = my(r, 8, §) (8.1.8)

The solutions y(r, 8, ¢) to these equations corresponding to fixed values of f and m must be products of a func-
tion of r and the spherical harmonic ¥, (6, ¢):

y(r, 8, 0) = R(NY, (8, 0) (8.1.9)
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Substituting (8./.9) in (8.1.2), (8.1.8), and (8./.9), we obtain
[ A 1d 11+ 1)#
2

e )t +V(r)}R(r)=ER(r) (8.1.10)

a 1 a 1 a m m
[‘W’“WE*WW]“B’W=’“+”Yf(9’¢) (8.1.11)

and
a m m
—i%Y, (0, 0) = mY, (8, ) (8.1.12)

Equation (8.7.10) is the radial equation; (8././7) and (8.1.12) are the angular equations. From (8././2) we can
conclude that the ¢-dependence of ¥,'(8, ¢) is of the form &'™¢ . Thus ¥,'(8, ¢) = G|'(®)e'™ , where G/'(8)
is a function of 6 only.

We write the radial equation in the form

214’ 1(1+1
{_ﬁ;d—r:(r) +L2+u—”—+w >} Ry = EyRy, (r) (8.1.43)

Introducing the function u,(r) = rR,(r) we arrive at

_ﬁ_zd_2+l(l+ 1y #?
2pg,? 2ur?

We define an effective potential:

+ V(r)} ur) = Euy () (8.1.14)

1+ 1) #?
V. = Vin+ (;T; (8.1.15)

We may view (8././4) as a one-dimensional problem, i.e., a particle of mass | moving in the effective poten-
tiat V 4, the one difference being that r assumes nonnegative values only. To express (8././4) in dimensionless

form, we define
_ e _ A _ E _r
E, = Y a, = ue2 lk, = E| p= Z (8.1.16}

Equation (8.7./4) becomes

d>  1(+1
l:;}p—z (pz ) p xfijr“u(P) =10 {8.1.17)
Let us define u,(p) = e P&, (p); we now obtain
d’ 2 1+
[dpz 2xud_p (p p? ))]éu(m =0 (8.1.18)

with the boundary condition £,(0) = 0. An expansion of £, (p) in a power series of p yieldsé, (p) =

psz C p?, where C, is the first nonzero coefficient. Thus,
¢=0

d
éu(p) Z(QH)C peie (8.1.19)

¢=0
and
dzéki(l))
dp?

= Z(qﬂ) (g+s-1Cp!* "2 (8.1.20)
q=0

Substituting (8././9) and (8./.20) into (8./.18). we obtain a power series on the LHS and zero on the RHS; thus

the coefficients of the powers of p equal zero. We assume that the solution of (§./.13) behaves at the origin

as r’;

Ry(ry - Cr (8.1.21)

r—0
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Substituting (8.£.21) w0 (8.1.13) we obtain
Id+1)-s(s+1)y =0 (8.1.22)

which is satisfied if s = [ or s = —(/ + |). Therefore, for a given value of E,,, there are two linearly inde-
pendent solutions of (8.7.13). The solutions behave at the origin as r/ and 1 /r'*!, respeciively. The latter
solution must be rejected, as it can be shown that (1/r/+1) Y,’"(B, ¢) is not a solution of the eigenvalue equation
(8.1.2) for r = 0. It follows that the solutions of (8./.13) go to zero at the origin for all I, since
U, (r) -~ Cp'*' Therefore the condition u,, (0) = O should be added to (8.1.13). In the power series that

we obtai;—;?e now take the lowest term and equate its coefficient to zero. It follows that
[-i(d+1)+s(s-D]C, =0 (8.1.23)
Since C,#0, wehave s = = or s =1+ L. Next, we set the coefficient of the general term pI*s-? equal
to zero (for s = 7+ 1 ) and obtain the following recurrence relation:
q(q+2i+l)Cq=2[(q+l)1“—l]Cq_, (8.1.24)
Hence, assuming that C,, is known, we can calculate C,, C,, .... Since C /C, _; — 0 when g — oo, the

series is convergent for all p. One can show that

_ q[i)q (k=D 2+ 1D)!
Co= DAET) Gmg=Di(g+2r+nic (8.1.25)
where C,, can be determined from the normalization condition:
J rleu(r)‘Zdr = j |u“(r)|2dr (8.1.26)
0 0

A hydrogen atom can be viewed as two point-charged particles—a proton and an electron with Cou-
lomb’s interacting potential between them. Write the Schrodinger equation for such a system and
separate it inio two parts: one describing the motion of the cenier of mass, and another describing the
relative motion of the proton and the electron.

The Schrédinger equation for the proton and the electron is

a[vy vi
-3 ml,+n_1e +V(r) |y = Ey (8.2.1)
where m, and m, denote the mass of the proton and the electron, respectively. The indices | and 2 refer to the
proton and the electron, respectively. The potential between the partictes is
I Ze?
Viry = Vir,—ry) = —Ze? > > > = =L (8.2.2)
A/(‘rl “X)T (V=) + (8- 2y)

Define the relative coordinates:
X, =X, - X, ¥, = ¥,- ¥, I, =2,—1, (8.2.3)

m,ry +mr,

and the center of mass coordinates r_,, = . For the differential operators we have

m,+m,
2 () 2
a.Y% N mp +m, axgm B mp +m, axcmaxr + axg ( 2.4)
and
82 ( m, )2 aZ Zme a! az
o T Nmrm) gd P w305, o (8.2.5)
L >?
Similar relations hold for the operators ——, =, —, and —;. Substituting the operators into (8.2./), we obtain
dy, dy; 0z} dz;

#2 1 2 o 2 1 3 )] ze
‘Zuwme(axsm*ayzm*azsm il o "oyt oz } 25 A #20
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8.3.

8.4.

m.m,

where p is the reduced mass, |1 = . We separate the wave function ¥ into two parts. The first part

m_+m

P e

depends only on the center-of-mass coordinates, while the second part depends only on the relative coordinates,
= &(r..)x(r,). Substituting into (8.2.6), we arrive at

Cits Aws

ﬁz 1 ﬁz [[ Z }
_2¢(rcm)[mp+nz cm¢(rm)} 2%(r) v; +_+E x(r,) (8.2.7)

For (8.2.7) to be valid for all values of r, and r,, each side of the equation must be equal to a constant. Therefore
we obtain two separate equations:

K 5
{2 (m, +m) em® Ecm} W) = 0 (828)

and
2

ﬁZ
(Evf + ZT" + E,.)x(r,) =0 (8.2.9)

£, is the translational kinetic energy of the center-of-mass frame and £, is the relative energy. Clearly we have

E =E_, +E_ To obtain the wave function of a hydrogen atom’s clectron one must solve (8.2.9) (see Problem
8.1).

The wavefunction of an electron in a hydrogen-like atom is Yy (r) = Ce_"/a, where a = aq,/Z;

a,=0.5 A is the Bohr radius (the nucleus charge is Ze and the atom contains only one electron)
(a) Compute the normalization constant, (b) If the nucleus number is A = 173 and Z = 70, what is the
probability that the electron is in the nucleus? Assume that the radius of the nucleus is
1.2xA"? fn. (¢) What is the probability that the electron is in the region x, y, z > 0?

eer
(@) The normalization condition ISJ J = L. Substituting ¥ we have

Jt‘
CJ -2”“drj d J sinBdb = 4nC2J- redr = | (8.3.1)

The integral in (8.3.1) is

o

rZ_Zr/ud _(‘_’)1]—-3 _(C—Ij32! —gi 832
e r = 2 ( ) = 2 L 4 ( e )
0
1 4312 1
Therefore, C = (Ht_,&] ==
a N
(b) Denoting by R the radius of the nucleus, the probability that the electron is found in the nucleus is
R 2n L R
P= J r21W(r)|2er d¢_[ 5in® dd = 4nC’zj e ¥4 gy (8.3.3)
0 0 0 0
Since R is small compared toa (R ~ | fm = 10° A and a~1 1&), we can consider le2 as a constant in the
nucleus, i.e., ¢ >’ ~e2R“~ | Thus, we have
R
Zr
P = if,rza'r= 3(51 = ( [))A = II)(]_(T6 (r, =12 fm (8.3.4)
) Na/ T 3\a,/ Vo ! ‘ ’

(¢) The wave function is independent of both ® and ¢ (it is a symmetrical function). Thus the probability that the
electron is found in 1/8 of the space (i.e., in x, y, z >0} is simply /8.

Compute the normalized momentum distribution of a hydrogen atom electron in states 1s, 25, and 2p.
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The normalized momenwm distribution is [y(p)|~, where y(p) is the wave function in the momentum repre-
sentation. In order to find y(p), we perform a Fourier transform of the wave function w(r),

[
P r/fzm(!.) d3’.

Wp) = el V (84.1)
We then substitute in (8.4.7) the explicit forms of y, (r), y,(r), and W, (r}, and obtain
1(2_0)3/2 |
Vi) = 7 [(pra2/ B2+ D)
o 20) | (8.4.2)
)l = P(? [ (p?a/k2 + 1))
and
L (2ey 1 [n 1}
R PV IS (F Ehar:
. (2_0)3 | (ﬁ,l}z (8.4.3)
[‘%‘(p” I R T S LI L
There are three different eigenfunctions for the state 2p: m = -1, 0, 1. Thus,
1 a)m ap.
{%p(p) AU TR PASE
m=0: ) (8.4.4)
l 2 _ i(2)3 (ap.)
e, = 2\ A V2
and
] (a 3/2 a(p, xip,)
VP = Al pa/a + 1740
m=+] , o, (8.4.5)
2 _ L(ﬁ)j a’(p, tip,)
ol = 3727 R(pPPd/ A+ 1/4))°
8.5.  Consider a wave function for a hydrogen-like atom:
y(r, ) = gl—h/%zm(6—Zr)Z-re‘Z’/3 cos@ (85.1)

where r is expressed in units of a,,. (@) Find the corresponding values of the quantum numbers », /, and
m. (0) Construct from (r, 6) another wave function with the same vajues of n and /, but with a different
magnetic quantum number, m + 1. (¢) Calculate the most probable value of r for an electron in the state
corresponding to y and withZ =1,

(a) Consider the exponential factor in y(r, 8); it has the form exp (~./—Er). Since E = -Z'/n”, we conclude
that n = 3. The angular quantum number / can be determined either by exploiting the factor r!, which multi-
plies the Laguerre polynomial in hydrogen-like wave functions, or by carrying out the following operation:

1 o d
I y(r,0) = sz(r) cos® = f(r) [‘m_wa_é( sin® 30 cose)]

o d T i
=1 | §inB70 (SIN®)? | = 2f(r) cos® = /(I + 1) y(r, §) (8.5.2)

Thus, / = 1. To find the magnetic quantum number, we use the operator L:

L y(r, 9 = —i% [f(r) cosB] = 0 = my(r, 8) (8.5.3)

Tt follows then that m = 0.
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8.6.

(b) Inorder to generate a new hydrogen-like wave function with & magnetic quantum number m + |, we use the
raising operator L, (see Chapter 6). Since / = 1 and m = 0, we have

L+Wm= "/(l_m) (,+m+])wm+l = ﬁWan (854)
We use the differential representation of L_:
d
L =L +iL =i(sind—-1i cos¢)i+i(cos¢+i sing) cotB5— (8.5.5)
+ X v ae a¢
and obtain
] a +id .
LVW,.q=c¢ géf(r) cosB = —¢ f(r) sinB (8.5.6)
Combining (8.5.4) and (8.5.6) we obtain
1 1 .
v, = —Tzf () sinBe'® = —81ﬁ23/2(6—2r) Zre 3 sinBe'? (8.5.7)
(c) The most probable value of r occurs when (ry)? assumes its maximum value. For Z = 1 we have
a(r\y) g 2 /3 ./2(?‘
5r =0=ar(6—1)1€ = k3—5r +12r} (8.5.8)

We obtain the quadratic equation % — 15 + 36 = 0; its roots are r = 12 and r = 3. Evaluating |ry| we find

that it is maximal for » = 12. Therefore, the most probable value of r is 124,

Consider a particle in a central field and assume that the system has a discrete spectrum. Each orbital
quanturn number / has a minimum energy value. Show that this minimum value increases as /
increases.

We begin by writing the Hamiltonian of the system:
# 3 ( ,d ) R Id+ 1

H = - > ,2ar 3 p: + V(r) (8.6.1)

Using H, = ~ S dr "3 + V(r) we have
H = i R0 8.6.2
=htan 2 (6.6.2)

The minimum value of the energy in the state [/ is

, KU+ 1) ,
Emm - WI H Zm 2 \I’(d r (8.6.3)

The minimum value of the energy in the state [ + 1 is given by

~

. [ A+ (1 +2) ]
Erl = J\p,H[H I Wi d (8.6.4)
Equation (8.6.4) can be written in the form
#i+1 BRI+ 1)
{+1
Emm = J“l”rknm r2 “"I+ d3)‘ + j“":kq- I[HI +2m r “"H—l d1 (865)
. 2 AL+ . . . - .
Since |y, ,|” and m o are positive, the second term in (8.6.5) is always positive. Consider now the first term
SIS
of (8.6.5). w, is an eigenfunction of the Hamiltonian H = H, + z'l—m ( 2 ) and corresponds to the minimum
eigenvalue of this Hamiltonian. Thus,
R+ A1+
J.\V/ l: *oam .z |V d’r v Hy tom gz [Vin d’r (8.6.6)

{+1
min °

This proves that E,:“n <E
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Write the Schradinger equation for a two-dimensional hydrogen atom. Suppose that the potential is

- e’/r, where r = Jx*+y2. Using separation of variables, find the radial and the angular equations.
Solve the angular equation. Describe the quantum numbers that characterize the bound states and the
degeneracies of the system.

Consider the Schrodinger equation in two dimensions:

B9 0y) 1] &
“2m| rar\ 9 +’.3 a¢2 TV = £y (8.7.1)
Performing a separation of variables y = R()®(¢), we obtain the angular equation
ER ,
—-—(72) = —m D)) (8.7.2)
ao°
The constant m must be an integer number, so the solution of (8.7.2) is
I
(I) - — ..'Hlﬂ) 7.
ur(¢) A,/Z_TL( (8 73)
Consider the radial equation:
R R LAR) h'm e’
‘ﬁ[;fz * rdr]+ SR =R = ER(:) (8.74)

Every state R, (+) is characterized by the principal quantum number # and the absolute value of the angular quan-
tum number m. The energies of the system are £ Every state with m = 0 is twofold degenerate, and the states
with m = (0 are not degencrate.

|t ®

The muon is a particle with fundamental properties, excepting mass, similar to those of the electron.
m, = 207m, (8.8.1)

The physical system formed by a 1™ and an electron is called muonium. Muonium behaves like a light
isotope of hydrogen, and the clectrostatic attraction is the same as for a proton and an electron. Deter-
mine the ionization energy and Bohr radius.

The reduced mass of 1he system is

— .y - 2£7 — (l L)
Mo = m v m, = 208" = L0 7008 /M (8.8.2)
The Bohr radius is
. i ( 1Y
a, (muonium) = L'“—Izza“(H)k 1 + 300 (8.8.3)

where a, (H) is the Bohr radius of the hydrogen atom. The ionization energy is

4
, _ e ( 1 )
E, (muonium) = zﬁzzEx(H) |- 300 (8.84)
where £, (H) = 13.6 eV is the ionization energy of the hydrogen atom. The study of the muon is of grea: interest.

The two particles that comprise the system are not subject to strong nuclear interactions, thus enabling energy levels
to be calculated with great precision.

Prove the following relation between the spherical harmonic functions:

m=+!
Ym(®, 0)Y,,(8,0) = const. (8.9.0)

m=-!
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8.10.

Use the expansion of the Legendre polynomials (see the Mathematical Appendix):

m=+/

(I—|m|)! |
(T+[m) 17

m=-|

P (cosy) = ml(cosBI)P (cosB, ye'm(® -0 (8.9.2)

where Y is the angle between two directions given by 8,, ¢, and 6,, ¢,.

We write the spherical harmonic functions in the form

(—1)‘"’*""’)’2J(21+1)(I—Iml) w

Y,.(0,0) = Jax T (cos B)eime (8.9.3)
Then,

"~ 2l+1m=+’(1—|ml)‘ 2

D VOO0 = 5 3 i P (cos®) (89.4)

m=-/ m=—f

We setin (8.9.2), 0, = 8, = 0, and 0, = ¢, = ¢ and obtain

P (cosy) =l P cos @)’ = POy = 1 8.9.5
ACO8Y) = I+ |m|)! 0s =P(0) = (8.9.5)
m=—f
Substituting (8.9.5) into (8.9.4) we arrive at
m=+{ / 1
+
2 Y, (8, 0)Y,,(8, ¢) = rpe (8.9.6)

m=-/

Since (2/+ 1) /4x is a constant, we have established the proof.
The parity operator is defined by the replacement r — —r (see Chapter 4). How does the parity operator
affect the electron’s wave function in a hydrogen atom?

In a hydrogen atom we can express the wave functions using the spherical coordinates (r, 8, ¢); we determine
how the parity operation affects these coordinates (see Fig. 8-1).

Fig. 8-1

We see that under the parity operator r = r, 8 5>n—0 and ¢ — m+¢. Since the radial part of the hydrogen
atom’s eigenfunctions depends onty on r, we conclude that the parity operator affects only the spherical harmonics
part. For spherical harmonics we have Y,'(B, ®) = a,(sin®) e'*; thus,

Yin-0,m+0) = (~1)'Y/(®, ¢) (8.10.1)
Therefore, under the parity operator,
¥)0.¢) - (-1)'1;(6,0) (8.10.2)
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8.12.

8.13.

8.14.

8.15.

8.16.

8.17.
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d d d
Moreover, since 30— _8%) and % - % it follows that the operators L, are not affected by the parity opera-

tion. Since we have obtained the explicit form of Y,"’(e, ¢) by applying the operator L_on Y,', we can conclude
an thae

cnlanlae

srithaiie any fircthae
willuuL ally 1urict vaivuiail

()

Yim-8,n+¢) = (-D'Y® 0) (8.10.3)
In other words, under the parity operation

Y7, 0) = (1), 0) (8.10.4)

Supplementary Problems

Consider a hydrogen atom in a state # = 2,/ = 0, and m = 0. Find the probability that an electron has a value r
that is smaller than the Bohr radius. Ans. 0.176.

For an electron in the state n and { = n — | in a hydrogen-like atom, find the most probable value of r.

Ans. r = n*/Z inunitsof a,.

Show that the degeneracy of the ath shell in a hydrogen atom equals 2n°. Take into account the spin of the electron
but not the spin of the proton.

The six wave functions of the state 2p for the hydrogen atom are

1 re—r/Zao ) 0
m; = +1, m, = 15, ¥y, =A sinBe
0
] refr/ZaU
m, = 0, m, = ié, Y, = B a cos O (8.14.1)
1 re—r/ZaO . _ib
m; = -1, m, = ii’ y_, =C sinQe

0

where «, is the Bohr radius and A, B, and C are the normalization constants. (@) Compute the constants A, B, and
C. (b) Show that the sum IWm,‘Z is a function of r only. (¢) Compute {r) for m, = 0.

1 1 |
Ans. (@) A=-—=, B= ., C=—F=1 (){r) = 5a,.
8/ ma, 4. f2na 8. /may

Consider a hydrogen atom in the state with the quantum numbers # and /. Calculate the dispersion of the distance

of the electron from the nucleus. Note that the dispersion is defined by A (r?) — (#)2.

Jnt (R +2) =P+ 1)}
Ans. 5 .

In a hydrogen atom the wave function y(r) describes the relative motion of a proton and an electron. If the coordi-
nates of the center of mass of this system are x =0, y =0, and z = 0, show that the probability density of the

(m+MV| (m+M 2
Com Y0 om Y

PP T
prown cquadid

For a two-dimensional hydrogen-like atom the Schrodinger equation is (- V2 -2Z/r)y = Ey (in atomic units).
Use cylindrical coordinates to find the equations for R(r) and ®(o).

i

Ans. —
diy?

td( dRY (2z m?
= —-m*® (o) and ;aTr(rE)*'[_“ ?+EJR(r) = 0.

7’
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8.18. Consider a particle in a spherical well, V(r) =
the particle’s energy spectrums,

. Assuming that the angular momentum is zero find

-V r<a
0 r>a

7 kY [N,
Ans.  The energy spectrums are given by ka = nT — arcsin ( 5 J and E = - These equations can be
solved either graphically or numerically (see Chapter 12). NEmV,



Chapter 9

Particle Motion in an Electromagnetic Field

9.1 THE ELECTROMAGNETIC FIELD AND ITS ASSOCIATED POTENTIALS

Consider an electromagnetic field, characterized by the values of the electric field E(r, ) and of the mag-
netic field B(r, ). The fields E(r, #) and B(r, f) are not independent; they must satisfy Maxwell’s equations. It
is possible to introduce a scalar potential ¢(r, t) and a vector potential A(r, t) such that

g, l2A

E =- ¢—car (9.1)
and

B=VxA (9.2)

Using Maxwell’s equations, it is possible to show that we can always find ¢ and A. However, when E and B
are given, ¢ and A are not uniquely determined. When we choose a particular set of potentials, we say that we
choose a gauge. From one set of potentials ($, A) we can obtain another set, (¢',A") by performing a gauge
transformation:

1of(r,
¢ = —;——fg: ) (9.3)
and
A = A+ Vf(r, 1) (94)

where f(r, ¢) is an arbitrary function of r and 7 (see Problem 9.2). The equations describing the physical system
involve the potentials ¢ and A, but we shall see that in quantum mechanics, as in classical physics, the predic-
tions of the theory do not depend on the gauge chosen (that is, the particular set of ¢ and A describing the
electromagnetic field). This important property is called the gauge invariance (see Problem 9.5).

Let us consider two examples of gauges describing a constant magnetic field in the z-direction, B = B,Z.
First we have the symmetric gauge,

, Xy 3
1
A=—§r><B=—§X y zZ (9.5)
0 0 B,
B,
or A = 5 (-y,x 0). Another gauge is the Landau gauge:
A = (-Byy,0,0) (9.6)

9.2 THE HAMILTONIAN OF A PARTICLE IN THE ELECTROMAGNETIC FIELD

Consider a particle of mass m and charge ¢. The classical equation of motion in the presence of electric and
magnetic fields E and B is

d*r q
mﬁ = qE+ _vxB (9.7)
The Hamiltonian that leads to this equation of motion is
1 q q
= gle-2a) (p-2a) + a0 ©8)
where ¢ and A are the potentials relating to E and B according to (9.1) and (9.2) (see Problem 9.1).

154
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In this chapter we use a semiclassical theory for particle motion in an electromagnetic field. In this theory
the field is analogous to a classical field, while the system is treated according to the postulates of quantum
mechanics. Thus, the particle is described by a wave function y(r, #), and the Hamiltonian is written as in (9.8),
but now p, A, and ¢ represent the corresponding operators (see Problem 9.3).

When we perform a gauge transformation according to (9.3) and (9.4), the wave function describing the
particle transforms (see Problem 9.4) as

\TJ'(r, 5 = exp [:T%f(r, !)J Y(r, 1) (9.9)

9.3 PROBABILITY DENSITY AND PROBABILITY CURRENT

Given a wave function y(r, #), the probability density is
2
p = |yiry, 0 (9.10)

where p expresses the probability of finding the particle at time ¢ at the point r,. For particles with mass m and
charge g (without a magnetic moment), the probability current density is

1 14 2q
s = ﬂ[? (W Vy - yVy™) —7Aw*w] (9.11)
If we consider a particle with spin § and a magnetic moment p, we have
1 T4 2q Ve
s = ﬂ[;(w*w—ww*) —7Aw*w} +-5 V% (y'sy) (9.12)
The continuity equation
RN
pd o e =
3t V.s=0 (9.13)

relates the probability density and the probability current (see Problem 9.3). Both p and s do not depend on the
gauge chosen, and they are said to be gauge-invariant; see Problem 9.5. The *“real” current corresponding to
particle of charge ¢ is defined by

I = gs (9.14)

94 THE MAGNETIC MOMENT

For a particle with a magnetic moment p_ in a magnetic field B, the interaction Hamiltonian is

oy

I

|
r=)
-
s
M
Ln

—

L=--S (9.16)
where g, the gyromagnetic relation constant is very close to 2:

g = 2(”%:*"') = 2.002319 (9.17)

9.5 UNITS

In discussing electromagnetic phenomena, it is customary to adopt one of the many possible systems of
units. The MKS system is popular in solving practical or engineering problems. In the study of the interaction
of electromagnetic radiation with the fundamental constituents of matter, it is more convenient to adopt the
Gaussian system of units. Therefore, as in the other chapters of this book, we have preferred to use the latter
system.
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Solved Problems

The classical equation of motion for a particle with mass » and charge ¢ in the presence of electric and
magnetic fields E and B are

ma = qE+§v><B (9.1.1)

. dr . av ..
where a is the acceleration of the particle and v is its velocity (v =;=r and a="p=r ) E and

B must satisfy Maxwell’s equations 5o it is possible to define the vector potential A (r, t) and the scalar
potential ¢ (r, ¢) such that

10A
I E=—V¢—Z§; II B=VxA (9.1.2)
Show that the Hamiltonian
1
H = ,.—(n—QA_W-(n—QAJ-s-ad) (9.13)
P47 AU el AN o A

I F= = I p=-— (9.1.4)

You can follow the following steps: (@) Write r as a function of p and A. (b) Write r as a function of
p and A, (¢) Use (9.1 41I) to write p as a function of v and A. (d) Use the vector “chain rule,”

dA 3A (dr oA
and the vector identity
(v-V)A = -vx (VxA)+V (v A (9.1.6)

dA
to find - (e) Combine parts (a) to (d) to get the equation of motion.

(@) Using (9.1.41) and (9.1.3) we get

. _ 91 4 q g
r= ap[zm(p—cA)-(p—CA)+q¢}=m(p—CA)=v {9.1.7)
(b) Asin part (@) we obtain
. df d[l{ ¢ l{d;ﬁg@—'l_g.
r=a = dz[m(_p_cAﬂ “mldr cadr] =m[p—cA] (9.1.8)
(¢) From (9.1.411) and (9.1.3) we arrive at
o= S 24) (5 )
p=-3 = -VH = _V[Zm pP-;A) (P- A +q¢] (9.1.9)

Recall that r and p are independent phase space variables in Hamilton’s approach, so V-p = 0. Using
V(p-p) = 0, we write (9.1.9) as

. !
p = EV[(p—gA)-(gA)]—qV(D (9.1.10)
From (9.1.7) and from (9.1.1/0) we have
p=2V(v-A)-qVo (9.1.11)

(d) From (9.1.5) and (9.1.6) we obtain

%:%—vx(VxA)+V(v-A) (9.1.12)
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9.2.

9.3.

Finally, using (9.1.211) we have

d dA
A:—d~;=—§T—VXB+V(V-A) (9.1.13)
(e) Combining (9.1.8),(9.1.11), and (9.1.13) we obtain
r =m[c(va)—q 03[—+V¢ (9.1.14)
Multiplying (9.1.14) by m and using (9.1.21) we finally get
mr = g(va)+qE (9.1.15)

which is the equation of motion.

Let A (r, 1) and ¢ (r, r) satisfy Eqgs. (9.1.2). For given electric and magnetic fields E and B, are the
potentials A and ¢ determined uniquely? If not, explain this freedom.

Assume that A, and A,, ¢, and §, satisfy (9.1.2) with the same E and B, namely,

10A / 10A
E = _V(pl_z"a—tl = —[\ ¢2+Ea_12) (9.2.1)
and
B = VxA, = VxA, (9.2.2)

Now, if A and ¢ are determined uniquely, then we must have A, = A, and ¢, = ¢,. We define a=A | - A,
and ¢ = ¢, — ¢, and investigate whether a = 0 and ¢ = 0. From (9.2.2) we obtain

Vxa=0 (9.2.3)

Since the gradient of any function f (¥, r) satisfies V x (Vf) = 0, one can show that a = VJ for some function
Fr, ¢).If we use (9.2.1) we obtain

10
From (9.2.4) we get V¢+%V(g—g =0 or
19
¢ = —;a—{+C(r) (9.2.5)

where C(¢) is a function of r. Without loss of generality we can choose C = 0, since this corresponds to shifting
the energy by a constant. From (9.2.5) we therefore obtain

13
a=Vf o= —;a—’: (9.2.6)

where f(T,¢) is any function of r and 1. We see that a and ¢ are not necessarily zero. The potentials A and ¢ are
not deiermined uniquely since f is arbiirary. The nonunigueness in {($.2.6) is calied “gauge freedom.” This means
that if A and ¢ satisfy (9./.2), then A" and ¢' obtained by the transformation equations
1] 1 1 a
A'= A+Vf ¢ = ¢—;a—’: {9.2.7)

are also potentials.

(a) Write the quantum Hamiltonian for a particle with mass m and charge ¢ in the presence of an

electromagnetic field. (b) What is the probability density for finding the particle in r = r; at

t = 1,7 (c) Obtain the equation of conservation of probability and find the probability current

demsity,

(a) From the classical Hamiltonian (9./.3) we reach the quantum Hamiltonian by replacing r and p with the oper-
ators ¥ and p . Remember, however, that A (r, ¢) and ¢ (1, £) are functions of r, so we must also replace r
with F in these functions. Thus we obtain

L(A 95 s )2 .
H=5-p-7A(R1) ) +g0 (70 (9.3.1)
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(b) Let y(r, ) be the wave function of the particle. Then the probability density of finding the particleinr = r,

ar = 1y is
plrety) = |‘V(ru» rn)lz = W, t,) W(Tg, t) (9.3.2)
: Ip
{¢) First, let us calculate ETE
d d oy* dy
T =50y = Frvew (93.3)
: . : , . L, oy*
Using the Schridinger equation and its complex conjugate —lﬁT = (Hy)}* we get
d 1
a—‘: = — [Hy*) y—y* (Hy)] (9.34)
We use the coordinates representation
F=r p = -V {9.3.5)
In a coordinate representation, A (¥, r) becomes a vector function, so
A(f. 1) = A(T, 1) (9.3.6)
and the quantum Hamiltonian is
L[ q . q
= m(zﬁv+;A)-(zﬁv+;A)+q¢ {9.3.7)

Equation (9.3.4) then gives

% - vl (a7 20 (v 2]

- \u*ﬁ[(:‘ﬁV+%A)(iﬁV+gA)w” {9.3.8)

which can be written as
3 1 14 2q
a—? = —V{Z—m[f (V*Vy-yVy) -TAW*W}} (9.3.9)

The equation describing the probability conservation is
%_p +V.s=0 (9.3.10)
t
where s is the probability current density. From (9.3.9) and (9.3.1/0) we conclude
l é *V * 2—q %
$ = 5| T (WYY - yVy*) - —Ayty (9.3.11)
which is the probability current density for a particle moving in a region with an electromagnetic field. In a

- p | TR RS L 1 P, P Y e B | A N a1 02 TN L TR T YT P . G DR TS
vacuum m wiici nere 18 no cicclromagneuc 1icid, A = U, dnd (¥.J.1 {) 15 reauced 10 Uic Knowiik prooaouiy
current density described in Chapter 3,

According to the postulates of quantum mechanics, a given physical system is characterized by a state
vector [y). Consider a particle of mass m and charge ¢ influenced by an electric field E and a magnetic
field B. In Problem 9.2 we have shown how different pairs of potentials A and & can describe the same
E and B. In this problem we study how the state vector [y) depends on the choice of gauge (A and ¢).
Follow these steps: (@) Write the Hamiltonian with A and ¢; then with A' and ¢’ relate A and ¢ by
(9.2.7). (b) Write the Schrodinger equation for the two cases. (¢) Show that if y is the solution of the

first Schridinger equation, then

LLeallll

Y(r, 0 = e/ hy(r ) (9.4.1)

is the solution of the second equation [where f is the same as in (9.2.7)). (d) Discuss the results.

{a) According to (9.1.3), the Hamiltonian for A and ¢ is

H = ﬁ(p—gA)-(p—gA)+q¢ (9.4.2)
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Similarly, for A' and ¢' we have
oo q,. 9, .
= gp- ) (o200
Using (9.2.7) we obtain
7= o n_9a_1 9, 4 ) q9f
_Qm(p A Vf) (p—cA—CVf a0y

The Schridinger equation for the first case is

Hiy) = i
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{9.4.3)

(94.4)

(94.5)

We can use (9.4.2) to write the Schrodinger equation, in the coordinates representation, by replacing p with

—inV, and obtain
1 rt
[l - 2a) s e = 20

For the second case we have

H| )— it L\I:>

Using (9.4.4) we have, in the coordinates representation,

1 ) 2 gof] - E)\V(r, )
[ﬁ(—lﬁV—%A—?Vf) +q¢—;;—;{|w(r, $) = ih—— 3

Suppose that y(r, ) is a solution of (9.4.6). Define
Wir, 1) = el ehy(r g
We wish to show that \;I is the solution of (9.4.8). Using (9.4.6) and (9.4.9) we have

ﬁawg, N _ qaf(r e Yeby(e, 1) + I ,M( awr, ,))
C

Zafért, t)w( N+ glafr. ry:h[z (_ ihV - ) +q¢] gtafir. ryrﬁi’(r, )

So,

ﬁa\l’gl; 7) - [_ Zaf(ar; )+ ¢]‘I’(r 1) + e ek [21 (—zﬁ,V A)] —iqf(r.l)fcﬁq;(r, ?)

We calculate the last term in the right-hand side of (9.4.171):

[(—iﬁV—gA)-(—iﬁV—gAﬂ ~af i chy(r, 1)

- (_'ﬁv g ) [ rane 'M( Z—’V (r, r)—iﬁV—gA)] wr. 1)
= goigfir, Ych { (_I :):W_‘l \ ( g :}:\’l_‘_] \ P
(5 \ (‘ —iny ¢ j k C — ity P j WiT, 1)

hence,

AW,y _ [ qdr.n 1 g0 o q.)-
ih—x— at = [ - fat q¢+m(—;Vf—:ﬁV-;A)]w(r,,)

So \I!(r, 1) is indeed the solution of the Schrodinger equation {9.4.8).

{9.4.6)

(94.7)

(94.8)

{9.4.9)

(94.10)

(94.11)

.
=]
+a
[
(3%

~——

(94.13)

We see that when we pass from one gauge to another, the state vector describing the system is transformed by
the unitary transformation e™'¢/("- < where f(r, 1) is the function relating the two gauges. For the wave func-
tion, the gauge transformation corresponds to a phase change that varies from one point to another and is
therefore not a global phase factor. However, the physical predictions obtained by using the wave functions y
and y are the same, since the operators that describe the physical quantities are also transformed when we

change between the gauges (see Problem 9.5).

In Problem 9.4 we have shown that when we perform a gauge transformation

A—A=A+Vf

19
b2 =0- ca{

(9.5.1)
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The wave function describing a particle of mass m and charge g transforms according to
gfr ey eh

yr,n =y hH=e¢ y(r, 1) (9.5.2)

(@) Do the probability density and the probability current change when we pass from one gauge to
another? (b) Suppose that at time t we want to measure a physical quantity @ . Does the probability of
obtaining an eigenvalue ¢ of @ depend on the gauge? (Assume for simplicity that g is nondegenerate.)
(a) The probability density in the first gauge is

p(r, 0 = [y, nl* = wir, ny'(r,n (9.5.3)
After the gauge transformation, and according to (9.5.2),

tgfr. v ch

pi(r, 0 = |\p'(r, t)’2 = y(r, r)\u'*(r, H=e yi(r, 1)y emigfnen \p*(r, H= y(r, oy, 0 (9.54)

We see that the probability density is gauge-invariant. Now, the probability current density in the first gauge is
1 Jh 2q9

s = ﬁ{;(w*V\u-Ww*) —TAW*W} (9.5.5)

When we perform the gauge transformation (9.5.7) we have

1 A N :
§ = 5_’; {7[ E_'qf(r"y‘ﬁ\u*v(f’qﬂr.[h,‘w) _equll‘,rVrﬁwV( e—qu(l'.!)/(ﬁw*)]

2 : ; :
_ (_q (A +Vf) ( e-:qf(r.rwﬁw*) (ean(r.ly(h‘u)}

1 Jhriq iq 29
- z”m{?[ﬁ_c‘"*vf‘“ VVy+ ﬁ—(.wvfw*—\uvw*] —T (A “’*“’}

NI RET.
= 3 7| YV VIV - TAvry)
We see that the probability current density is gauge-invariant.
{b) Suppose that ¢(r, 1) is the eigenfunction of Q corresponding to the eigenvalue ¢:
Qo(r,n = qo(r, 1) (9.56)

According to the postulates of quantum mechanics (see Chapter 4), the probability of obtaining ¢ when the
system is in the state y(r, f) is

P, = (9ly) = ¢*(r,ny(r. n) (9.5.7)
When we make the gauge transformation (9.5.7), the wave function ¢(r, 1) will transform to
o, 1) — o, 1) = NGy (9.5.8)

The probability of obtaining ¢ will be determined according to (9.5.2) and (9.5.9):

Pc'z = ¢'*(r, nY(r, 1) = e—:qf(r.m-ﬁq)*(r, t)e"’“r"y“ﬁ\p(r, 1y = ¢*(r, Y, 1) = Pq (9.5.9)

We can conclude by saying that all the physical predictions do not depend on the gauge that has been chosen.

A one-dimensional harmonic oscillator consists of a particle with mass m and potential energy

1
V() = moi? (9.6.1)
In addition, this particle has a charge ¢ and is placed in a uniform electric field E parallel to the x-axis,
E = E%. (@) Find a suitable potential field § (x) corresponding to the electric field. (5) Write the Ham-

iltonian of the particle. (¢) Perform a coordinate transformation y = ax + b (a and b are constants),
such that in the y-coordinate the Hamiltonian is similar to that of a one-dimensional harmonic oscillator
(with no charge). What are a and b? (d) Find the energy eigenvalues and eigenstates of the system.

(@) Wehave E = EX and we seek ¢{x, r) such that
E =-V¢ (9.6.2)
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9.7.

Since B = 0, we seek a gauge in which A = 0. Integrating (9.6.2) we obtain ¢ (x) = —ex+c, wherecisa
constant of integration. Let us choose ¢ = 0; then
O(x) = —ex (9.6.3)
{4} The total Hamiltonian is
P,
A= I ¥ amext —ex (9.6.4)

The first term on the right-hand side of (9.6.4) is the standard kinetic term, the second term is the harmonic
oscillator potential energy, and the third term is the electrical potential energy.
(c) We will now write (9.6.4) in the following form:

5

p; 1 ,

H, = ¥ im(oiy* +H, (9.6.5)
where H isaconstantand y = ax + b. Consider the kinetic term. We see that p, = p_,s0 a = 1. Now we
can substitute y = x + b into (9.6.5) and obtain

P? ] 2 pg l 2.2 2 l 242
H, = 5 +3m@ (x+b)" + H, = 5 + 5me’x> + mo’bx + 5mer’b” + H, (9.6.6)

From (9.6.4) and (9.6.6) we see that H = H_onlyif b = —&/mo’ and H, = -£2/2m?. To conclude, if
we perform the coordinate transformation y = x - £€/m®?, we get a one-dimensional harmonic oscillator with
no charge, and the energy shifted by —-£°/2ma’.

{d) The energy eigenvalues of a one-dimensional harmonic oscillator are

1 1
E, = ihm[’”i) (9.6.7)
corresponding to the eigenstate |y,). We have a shifted harmonic oscillator; thus, the energy eigenvalues are
now,
R PO N A RS
[2" = 2TLUJ\KH+2)-- 2mm2 (¥.0.8)
Its eigenfunctions are
£
v, (y) = W,,(x——zj (9.6.9)
mo

As a function of y, (9.6.9) expresses the standard one-dimensional harmonic oscillators’ eigenfunctions. Note
that as a function of x, however, those eigenfunctions are different,

Consider the constant magnetic field B = B Z. (a) Find the potential A corresponding to the symmetric

1
gauge A = Fr % B . (b) Find the potential A corresponding to a nonsymmetric gauge. (c) Compute the
gauge function f(r, #) relating the two gauges used in parts (@) and (b).

1
{a) Inthe symmetric gauge A = —5T X B we get

Xy oz
1 | S R
A= S|y 2= —,zyB(,x+§xB(,y (9.7.1)
0 0 B,
)
B,
A= 7(—)7.,(,0) (9.7.2)

(b) We can use any other gauge and find a different A. As an example, we can try to find A only in the x-direction,
A = A.&.In that case,

- +(?‘]f—(%)f = Bt (9.7.3)

-
Z

Plo =

VxA =

[ 8"'0) [SH

y
9
dy
0

E;.l
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By integrating (9.7.3) we obtain A, = —-B,y+c. Wecanchoose ¢ = 0, so
A, = -B,y A, =A. =0 (9.7.4)

We want to find the gauge function f(r) such that A = A+ V£ (see Problem 9. 2). From (9.7.2) and (9.7.4)
we find that

BO
A -i- (_)’, X, 0)

. (9.7.5)
A

B() (__V, 07 0)
or, explicitly,

B, .
A = %y = Ax+axf= —Bo_y+a",f
B (9.7.6)

o -
A, = 7x= Ay+8yf= E)yf
Hence,
of Bg of B
- 3 a_y = 3x (9.7.7)
By integrating (9.7.7) we finally obtain
B,
fl,y= xy+c0nst (9.7.8)

A particle with mass m and charge ¢ is in a region of a constant magnetic field B. Assume that B is in
the 2 -direction and use the Landau gauge; i.e., A = (-B8Yy, 0, 0). (a) What is the Hamiltonian of the par-
ticle? (b) Show that the Hamiltonian commutes with p, and p.. (¢) Work with the basis of the eigenstates
of p, and p, and use a separation of variables to show that for the y-component, the Schridinger equa-
tion reduces to a Schridinger equation of a harmonic oscillator (see Problem 9.6). (d) Find the
eigenstates and eigenenergies of the Hamiltonian.

(a)

b

{c)

The classical Hamiltonian is

1 q q 1 9pos
e o 2a) (520} = v 2] [0+ 5
where &, is a unit vector in the x-direction. The Hamiltonian operator is therefore
g, ¢_ | 29 g, Y
2m p2+p2) 2m(p+ B)_zm{ ?-+p2+p2+—Byp +( -B yz] {9.8.2)
To find the commutation relations between // and p_or p_, we use the known relations
lpop, = Ip,pl) = Ip.y]l = Ip,zl = Ip,yl =0 (9.8.3)
and obtain
1 2¢4B
(H.p]) =5\ Ppl+—ylp.p] (9.84)
By definition, [px,px] = [p..p.] = 0, so we easily find that [H, p.] = 0, and also for p,
1
[H.p.] =5, 1pPp] =0 (9.8.5)

Since H commutes with p, and p_, we can find eigenstates of / that are also eigenstates of p, and p_ (recall
also that lp.p.]) = 0). We use a separation of variables; namely, W (x, y, 2} = W, (x) W, (M) v, (2)- For
y, (x) and . (z) we choose the eigenstates of p, and p,, respectively:

ip xsh

W () =y, (1) =e
(9.8.6)

ip.z/h

V. (D) =y, (2) =e

SO

p x/hoap c/h

vy z) = e e  y (y) (9.8.7)



CHAP. 9] PARTICLE MOTION IN AN ELECTROMAGNETIC FIELD 163

where p, and p, are now constant numbers (these are the eigenvalues). Using (9.8.2) and (9.8.7) we get the
Schriodinger equation:

1{2 , 298p, (
H\p:Epr+pz+p§+ i

O

2
‘B) )’ZW\I’(X,}’» ) = Ey(x,y,2) (9.8.8)

-

o~

Note that in (9.8.8), p, and p, are constant numbers and only p, and y are operators. Let us denote

1
5m (pf +pf,) = g; then (9.8.8) can be written as

I (qu,) 1 quz
i-n;py?-+ e NV raa\ o yiw(xnyz) = (E-a)y{xy 1) (9.8.9)

We sec now that the y-component of the Schrodinger equation is similar to the Hamiltonian of Problem 9.6
[see, for example, (9.6 .4)]. In order to show that the y-component is identical to the Hamiltonian of a harmonic
oscillator we make a transformation similar to the one in Problem 9.6; that is,

- cp,
T y+q_B (9.8.10)
LP} =P =Py
The Schrédinger equation (9.8.9) then becomes
[L L (a8, Pl
2mp;+2m(c)y _'2“,7-1}‘4’* (E-a)y (9.8.11)
or
2
{ﬁl’;*sz(qTé)zﬂw = (E—;—;n)w (9.8.12)
If we denote E = E—pf/lm, (9.8.12) becomes
{2me,§+%m“’§ 52]\!'(% Y2 = Ey(x3,2) (9.8.13)

9B

2
rm) . We sce that (9.8.13) is indeed a Schriodinger equation for a one-dimensional harmonic

where @ = (
oscillator.

(d) Since (9.8.13) is the Schrédinger equation of a harmonic oscillator, we know its eigenvalues and eigenstates:

~ 1 gB 1
E, = hw, n+z) = . n+ s (9.8.14)
and
ma 1/4 2
v, = (—n;] e (9 (9.8.15)
where H, (x) are Hermite polynomials. The eigenvalues of the original Hamiltonian (9.8.2) are E [see (9.8.8}].
Hence,
E =E p’z—ﬁﬁ( ‘) P (9.8.16)
R T P\ "3 ) o, o

where the eigenfunctions v, {x, y, z) are

mm, Y144 i s mo cp,\? cp,
v, (x,y,2) = (Tt_ﬁg) ) x/he P;-/f"exp[_z_ﬁlg(}’+q—8) }H"(_v+q—3) (9.8.17)

9.9. Solve Problem 9.8 for a particle of spin 1/2 (an electron, for example) and with a magnetic moment
H=us.
T L ¥
(a) We add to the Hamiltonian (9.8.2) the interaction energy between the spin and the magnetic field,
H=_uB (9.9.1)

and obtain the total Hamiltonian:

| 2
H = ﬂ(p—‘A) -u-B (9.9.2)
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The magnetic field is B = B, and we use the gauge A = (—-By, 0,0) to obtain the Hamiltonian operator:

| qupx qB 2 l"lsB
H = gl pterienie = v+( L)) -4, (99.3)

One can easily see that the Hamiltonian (9.9.3) commutes with p, and p,. The only term that we need to check

H.B
{after using the results of Problem 9.8) is TSZ. Since the degrees of freedom of the spin are free from the

spatial ones, we have [p, S] = 0. Specifically,

KB B
[p_ﬂ"'g*SJ = [ "g‘SJ =0 (9.9.4)

Including the spin states, we use the basis of the eigenstates of p, and p, as well as of S? and S,; namely, our
wave function is

VX9, 2) Apin = et e‘p’:/ﬁ\p), MxS=1/2,8) (99.5)
where x (S = 1/2,S,) is the spin state of the electron that is an eigenstate of 52 and §.:
4
SZX(S =1/2,8,) = th(S+ Hx(S=1/2,8) = §hzx(S =1/2,8)) (9.9.6)

)ﬁx(s =1/2,5) (9.9.7)

r3 —

SX(S=1/2,8) =haSx(S5=1/2,8) = (i
. : . . 3 1 1 _
We will represent the operator S using the Pauli matrices S = 50. The states x| 5,5 | can be written as

1 1 1 1 0
N2+3)=\0 U3-5) =1 (99.8)
see Chapter 7.

In order to find the eigenfunctions and eigenvalues, we follow Problem 9.8, part (d). and write the Schrodinger
equation;

1 l . 1 [
(Q_m!’; + §mw§ ¥+ mpf - EBS:]\II (X, % 2) Xopn = Evy(x,y,72) A spin (9.9.9)
where [following Problem 9.8, part (d), see (9.8./0) and (9.8.13)]
- P,
y=y+ q_B
(9.9.10)
gB
W, = ;n

and p,, S = 1/2,and S, = £1/2 are constants. Defining

- gB M,

E=FE-_,+3BS. (99.11)

we obtain from (9.9.9) a standard one-dimensional harmonic oscillator Schrddinger eguation,

1 2 l 2 =2 I
ImP;t M0 Y)Y = By (9.9.12)

with the eigenvalues E = fhiwg(n+1/2) and the eigenfunctions y (x, y, z) Xopin» Where W (x,y,2) is as
given in (9.8.17). Hence, the eigenvalues of our Schrddinger equation (9.9.9) are

e @( 1) P K
=ﬁm(‘ f?+§ +m—SBS: {9913)

These eigenvalues are known as the Landau levels.

Consider the particle of Problem 9.8. (¢) Assume that the particle is in a very large, but finite, box:
0<x<L,, —Ly <y< Ly, and 0 <z < L . Write the eigenfunctions in that case. (b) Find the number of
states per unit area (in the xy-plane).

(a)

Consider the Schrodinger equation

Hy (x,,2) = Ey(x,y,72) (9.10.1)
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where H is given in (9.8.2). We also have the boundary conditions
I wx=0) =ykx=L) =
zzy I yO=-L) =y=L) =0 (9.10.2)
HI wy(z=0) =y(z=L) =0
Using the separation of variables of Problem 9.8 and (9.10.21), and (9.10.211), we replace (9.8.6) with
1
Y, (x) = 7oL sin (p,x)
1 (9.10.3)
y(z) = ﬁzsm (p,2)
where
T
p, =7 hn, n,=012,...
- (9.104)
lp. p.=phn, n,=012,...
B
Assuming that L is very large such that gﬁLf » 1, the y-part of the wave function (9.8.15) will hardly be
affected by the boundary condition (9.70.211), as is the case for the y(y) wave function. The eigenstates are
therefore [see (9.8.17)]
(mmBJ““ 1 ) ) [»mm ( Cpx) } ( cpx)
VL) =\ 7z TEL sin (p, x) sin (p,7) exp| 57—\ y + 7B H|y+ 2B (9.10.5)
The eicenenercies are [see (9. 8. 716)]
A AAY Wi Wilwiid il B (NS A evns YY)

qB 1 1 (nh
Enynz = ﬁnTc(".v"' 5) +§'n'1(z—) n? (9.10.6)

where we used p, = nhn /L [see (9.10.4)]. Note that (9 10.6) does not depend on #,, so we have a
degencracy.

The number of states in the xy-plane is the number of different possible #, and n_, such that the particle is
inside theregion 0<x<L ,-L <y<L, . We note thatin the y-direction we have a harmonic oscillator cen-
tered at y, = —cp /qB [see (9. 8 10) and (9.8.11)]. Assuming that the deviations from the equilibrium point
y =y, are small, we need only to demand that —L <y, <L So

ep,
—l.y S—*‘;E < Ly (9.10.7)
c (mh
Using (9.10.4) we get ~L < -—B Z—) LSL,, or
(e <n s (e
g e, sn sl o L, (9.10.8)

The number of different states in the region 0 Sx <L, and -L <y<L is the number of different », in
(9.10.8), namely,

n,= gL L, (9.10.9)
Including the two spin states for each n_ we finally find the total number of states:
N = 2Z—BL L (9.10.10)
cor Ty
The number of states per unit area is, therefore,
qB
A T 91011
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Refer to Problem 9.10. In the case p, = 0, show that the current I is indeed zero.

Using the definition of the probability current density (see Problem 9.3) we obtain the probability current:

J q[hf .o Y
I =gs =5, (VYW -V - TAyty| (3.41.1)

Since Y isreal, we have yw*Vy —yVy* = 0, and so

.}

J = 2m(A\|1 Y (9.11.2)

We have shown in Problem 9.5 that the probability current is gauge-invariant. So we can choose, for example, the
vector potential A = (-By, 0, 0) (see Problem 9.8). We have

Jo=J. =0
q (9.11.3)
o = 2chy\|I*
Using (9.10.5Yand p, = 0, we easily see that y*y is an even function of y. The current I is
= JJ dx dy dz (9.11.4)
Wehave I, = 1. = 0,s0
' L L L.
qu A3 1 <
2 2 2
L= 2mcj Y Fay) [y, ] de] |y.2) d (9.11.5)
L, 0 0
L\
. 2. . 2
Since |w (y)|” is an even function (only in the case where p, = 0), we fin r g (v vy dy = 0 and

1. = 0. The classical motion of the particle is a circle and so the total current in the x- or y-directions is zero.

For the particle in Problem 9.10 and electric field E = E¥: (a) Find the eigenstates and eigenvalues of
the particle. (b)) If p, = O show that / _# 0 even though E is only in the y-direction. What is the drift
velocity?

(a) We add to the Hamiltonian (9.8.2) the potential energy:
He]eclric = g9 (9.12.7)

where E = -V ¢. Since E = EJ, we have ¢ = —Ey, and the total Hamiltonian is

s [ JUY » IO FEEN -
i q J_qD[).. q ,
H = 2_m(p ; ) +g¢ = 2m[pl+p~+p + ‘_v—2quy+((—J_v~J {9.12.2)
Working in a coordinate representation, we get the Schrodinger equation:
1 2( PN CI ] 24Bp, gB
5= |- — =+ y=2mqEy+{ | ¥ |y (xy, 1) = Ey(x,y,2) (9.42.3)
Zm[ o 8) 9z2 c C v
where we use the fact that H .. commutes with p and p.. The equation for y (v) is
1 [.,9 (29Bp, qB 2
27,,['! P +( —-2mEq Jy + YWy =ey(y (9.12.4)
p? 2
where € = E — 2:" 7y Defining
(pr VD
y=y+op 48 "o, (9.12.5)

E B
where v,, = % and w, = ZTn,we get from (9.72 .3}
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1,9 1
|~ ot 3mwgy’ W () = Ey(y) (9.12.6)
where
2
- P 1 2
E=E-7— 5 ¥ PxVp—3mv) (912.7)
The eigenstates of (9./2.6) are the standard harmonic oscillator eigenfunctions, and the energy spectrum is
2 242 fiv
- p: 1 1 nh Thvy 1
Enxn)_n__ = E,,_' + 5T PVpt imvé = ﬁms(n)_ + 5) + ﬂ[ 7}12 - _l;—n" + imvf) (9.12.8)

Note that, unlike (9.10.6), (9.12.8) depends on n, and the degeneracy is removed (due to the electric field).

The current (9.71.4) isI = JJ dx dy dz. Using (9.1/.3) we have /, = I, = 0, and

LV
2B [ 5
= 2me ) lw (»)["y dy (9.129)

_Ly

Ky

Notice, however, that in contrast to Problem 9.11, here even in the case where p, = 0, the function [y (y) |2
is not even since from (9.12.5) we can conclude that for p, = 0,

- vp ,
yEyo (9.12.10)
by (3) |* is even in y but nor in y. If we make the coordinate transformation y — y in (9./2.9) we obtain
Ly—vD/u)B
qu - Vp -2 -
{, = 2me) (y+ E)i"’ M| dy (9.12.11)
v ‘L»*’"D/‘”B i
Now using L), » =2 , we obtain
o, )
2
4°B - Vp -2 -
= e [y + u—,—ﬂ)!w(m dy (9.12.12)

— oo

The first term (linear with y ) will give zero since the integrand is antisymmetric. The second term will give

ZBv
';=2—mc(,7 l\u(y)l = ey, = T (9.12.13)

as we expected. v, is the drift veloc:ty (vD =cE/B).

9.13, Consider a spinless particle of mass m and charge g, subjected simultaneously to a scalar potential V(r)

1
and a magnetic field B = BZ. Use the symmetric gauge A = —5r x B and find the Hamiltonian of the

particle. Write it as a sum of H, corresponding to the case of no magnetic field and additional term H .

We have

1

g \2
H = z—m(p—;A) + V(r) (9.13.1)

Using Eq. (9.5), we calculate

i

(r-t)

q
+§—('.[p- (rxB) + (vxB)} -
2
BY 2.
4c? (47

qB, 232 gB, 232
= P+ (P, -yp) + g (P4 TP e —L A (P4 (9132

2 qBO
PP 5T (=py+px—yp tiap,) +
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Substituting (9.73.2) in (9.13.1), we obtain

1 7B,  4¢'B}

H = 2P’ + gcla 4 o3 (74 %) + V(D) (9.13.3)
We see that H = H,+ H,, where
1
H, = ﬂp2+ V(r) (9.134)
and
2p2
uB.L. 9B
H o= -5+ 3 (24 ) (9.13.5)
gh
where | denotes the Bohr magneton, p = me:

Polarized electrons, with a spin polarization (+) in the z-direction, enter a region of constant magnetic
field B = B,%. The electrons move in the y-direction. After time T the electrons reach a Stern—Gerlach

annaratiie in which the maonatic field ic in the z-diraction {2) Write tha intaraction Hamiltonian in the
uyyuuutua AL YYAEINCAE UiEw lllusll\/blw AAWANG AT QL MW L ML WW LALLM TY LAV LI ML G ALY L AR ALIRAILARARL AL WiIEW

region of a constant magnetic field. (b) In a detector D we can detect only electrons with spin polariza-
tion (<) in the z-direction. Find the values of B such that all the electrons will reach the detector D. (c)
For the smallest value of B, [found in part (b)], what is the percentage of electrons that will reach D if
the traveling time in the constant magnetic field region is T/2 (not T)?

(a) The interaction between the electron and the magnetic field is due to the magnetic moment of the electron

2
M, = mecS and the external magnetic field B = B . The interaction Hamiltonian is
2eB, 2eB,
H,=n -B= mCS-Xr= e S (9.14.1)

We can use the two-vector representation of the £z spin states (see Chapter 7),

[+2) — ((1))

0 (9.14.2)
-2 — (1)
In this representation, the electron spin operator can be described by the Pauli matrices:
13
§ =350 {9.14.3)
where
01 0 i 10
Gv=(| r\) G\.=( -n) o.=(r\ 1) (9144)
- AN G § g ¥ N—] U/ - U 1 7
Using (9.74.4), we can write (9.14.1) as
ﬁeBO( 01 )
it~ meo\l 0 (9.14.5)
(b) In order to find the state of the electrons at time r we need to solve the time-dependent Schrédinger equation:
d
iﬁ“‘la“tﬁ = Hly) (9.14.6)
The state |y) can be written as
() = a ()H2)+a()]-2 (9.14.7)
where af_ +0a’ = 1, orin the two-vector representation,
1 0 a, (1)
(@) = ot+(t)( 0 ) +Ol_(t)( 1 ) = (a_(t)) (9.14.8)

Using (9./4.5) and (9./4.8), the Schrédinger equation (9./4.6) becomes

3lacin) = Sald o Na) - ela) 9.149)
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Equation (9./4.9) is equivalent to the following two equations:

da (1) da (1)
I = w,0.() II I~ = 0,0,(1) (9.14.10)
where w, = eB/mc. Making another derivative of (9./4./01I) we get
da (1) dou (1)
i P 6 N (9.14.11)
From (9.14.11) and (9.14.10 1) we obtain
d o (1) )
7= () (9.14.12)
dr
and similarly,
d’a, (1) )
P 0,0, (4) (9.14.13)
t

The solutions of (9./4.12) and (9.14.13) are

{a+(t) = a,cos (my2) + b, sin (wy7)

o () = a_cos (wy!) + b_sin (@) (9.14.14)
where @, and b, are constants determined by the initial condition. The initial condition is
1
lw(r=0)) = |+z) = ( 0) {9.14.15)

Soa, = 1 and a_ = 0. From ai+af = | wegeth, =0 and b_ = 1. Thus the solutions of (9.14.14) are
{a+(t) = cos (w,1)

(1) = sin (o0 (9.14.10)
and the quantum state (9./4.8) is
cos (®,1)
W2 = | Sin (1) (9.14.17)
After a time T, the state of the electrons is
cos (w,T)
@) = | o (w,T) (9.14.18)
If we want all the electrons to reach the detector D, we must demand that
0
T = |-2) = [ 1) (9.14.19)
since the detector D detects only electrons with polarization —z. From (9./4.77) and (9.14.18) we obtain
|cos (w,T}| = 0 and |sin (@,T)| = I, or, equivaiently,
(ooT=g+1tn n=0,+1,+2, (9.14.20)
Using w, = eB /m,c we finally get
mcin
B, = ?7‘:(-2-+1tn) (9.14.21)
The minimum positive value for B, satisfying (9./4.20) is, forn =1,
m,c
(Bo) i = 5o (9.14.22)
Assuming that B, equals (9./4.2]), the quantum state py()) after time T/2 is
cos (wy1/2)
W(T/2)) = sin (@,T/2) (9.14.23)
Now, using (9./4.21), we have
€ (Bﬁ)min n
®, = - m_——ec = 57 (9.14.24)
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Hence, from (9.74.22) and (9.74.23) we get

cos (w,T/2) 1 ( 1 )
v (T/2)) = sin (0,T/2) ) = a0 | (9.14.25)
The probability of finding the electron in the detector D is
} | Lon(oy oL
Py = (=zlw /2 = | on(7)) = 3 (9.14.26)

In this problem we examine how the energy levels of the hydrogen atom are modified in the presence of
a static magnetic field; this effect is called the Zeeman effect. We shall ignore here the effects of spin
(“normal” Zeeman effect). Suppose that the mass of the electron is m and its charge is gq. (a) We denote
by H the Hamiltonian of the electron in the hydrogen atom (without magnetic field). Write the eigen-
states of H(, that are also eigenstates of L? and L,. What are the corresponding eigenvalues? () Suppose
that the atom is placed in a uniform magnetic field B along the Z-axis. Write the new Hamiltonian. Are
the states of part (a) also eigenstates of the new Hamiltonian? How are the energy levels modified?

A _~

VA + ¥4

u
Assume that the term (x2+yH)is negligible compared to fBOL: (this can be shown by a detailed

8m
calculation).

(a) The eigenstates of the Hamiltonian of the hydrogen atom can be written in the form

Bpim (16, 0) = R, (DY, (8, §) (9.15.1)
The number » determines the energy level, £, = -F, /n*. The energy levels in a hydrogen atom are degener-
ate; for each n the number / can assume one of the values /| = 0, 1,2, ..., n—1, and m is an integer between

—! and /. The total degeneracy of the energy level £, is n? (without spin). The wave function ¢, is an eigen-
function of L2 with an eigenvalue / ({ + 1) #°, and also an eigenfunction of L. with an eigenvalue m#.
{(b) According to Problem 9.13, the Hamiltonian is the sum of /, and

ZBZ
Hy = - 5B+ T (2 4y (9.15.2)

Now we assume (without a detailed proof) that the second term in (9.15.2) is negligible when compared to the
first one. Since ¢,,, (r) is an eigenstate of L, we have

(HO+H1)¢nIm(r) = H0¢n}m(r) —%BOL:Q)””"(]') = (Eu_muBO) q)n}m(r) (9[53)

We see that ¢,,,, (r) are also eigenstates of the new Hamiltonian, but the energies are shifted by muB,. Also,
the degeneracy is removed, because of the presence of the magnetic field.

An electron is constrained to move on a one-dimensional ring of radius R, see Fig. 9-1. At the center of
the ring there is a constant magnetic flux @ in the z-direction. (@) Find the vector potential A on the ring,
in the gauge in which it is independent of . (b) Write the Schrodinger equation for the constrained elec-
tron. (¢) What are the general boundary conditions on the wave functions of the electron? (d) Find the
eigenstates and eigenenergies of the electron. Use functions of the form e%¢.

y
Magnetic flux

o
-

B

Fig. 9-1
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(a) The magnetic field is B = B2 . The magnetic flux through the surface bounded by the ring is

(D=J.d.x‘JlB Chdy = J-d.rJlB <3y (9.16.1)

nside nside

the ring the nng

We would like to find Aonr = R, suchthat B = V x A, and A does not depend on ¢ . From (9./6.1) we obtain

O= JJ(VXA) -2 dS (9.16.2)

$
where § is the surface bounded inside the ring. Using Stokes’s theorem we can write (9.76.2) as
D = § A dl (9.16.3)

5

where € is the boundary of §, which is the ring p = R, and d1 is along the curve C. Now,

dl = (Rd§)$ (9.16.4)
where ® is a unit vector tangential to the ring (in the “n-direction™). From (9./6.3) and (9./6.4) we find
O = AR do (9.16.5)

0

Using the gauge in which A dees not depend on ¢, we get, from (9./6.3), ® = 27RA,. Finally we obtain

JA, —A =0
¢ (9.16.6)
{A‘b = InR

(b) Considering the symmetry of the problem. it is more convenient to use cylindrical coordinates. To write the
Schrédinger equation we have to express the gradient V in cylindrical coordinates as follows:

L3 .19 D
Vo= P55+ 0556+ 25 (9.16.7)

where . ¢, and 2 are unit vectors in the p-, ¢-, and z-directions, respectively. Since the electron is constrained
to move on the ring, we have ¢ = R = const. and = = const. Thus, the only nonvanishing part of V in

.1
(9.16.7) 1s q)‘;% Applying (9.16.6) and (9./6.7) on the ring we get

(gAY o[ pld @ P 10 eoy
=7 =ih _(—'A = 2m —’ﬁRa¢—('2RR = 2mR> _'ﬁa([)_('ZIt (9.16.8)
and the Schrodinger equation is
l ( L d ed )
S —ifigs = 23 ) W(®) = Ey(©9) (9.16.9)

(¢) Since ¢ is defined over 27, the general boundary condition for any function ofaq) determines that the function
will be periodic in 21, so we have [W (¢ +2m)| = |y (¢)| and similarly for a—‘g We consider only absolute
values——as in quantum mechanics it is only |\|l|2 that has a real physical meaning.

| — L
(d) Check whether y(¢) = N"M (k = const,) are solutions of (9.16.9). First, we find the normalization constant N:

o .
RJ Iy do = ZRR% =1 (9.16.10)
0 N
So N L Next l’“"(9169) d obtai
= . , Wi se = € . . and optain
0 m ext, we use Y(o) N mn C
e 2)+ (=) - 9.46.11
2mR: k- ) \2me) | T E (9.16.11)
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or, equivalently,

(ﬁk—;;b) = 2mRE (9.16.12)
We define (D(,Eé and write (9.16.12) as .
dN  2mR

(k—aﬂ ==1E (9.16.13)

1 .
From the boundary condition and the wave function y (¢) = Nezka , we have

2nk = 2mn n=0%1,%2, ... (9.16.14)
From (9./6.13) and (9.16.14) we get the eigenenergies:
2 2
aln-ora]
n—p/d 9.16.15
" 2mR’ ! ( )

and the eigenstates:

1
V. (9) = melm (9.16.16)

Refer to Problem 9.16, Egs. (9.16.15) and (9./6.16). The magnetic field is zero on the ring (recall that

the flux is inside the ring but not or the ring). (a) In classical mechanics, a particle (electron), constrained

to move on the ring, will not be affected by the magnetic flux. Is this also the case in quantum mechan-

ics? Is the energy of the electron a function of the flux ®? (b) Plot a graph describing the ground state

of the electron as a function of @ (or ®/®, ). (¢) The current on the ring can be defined by
dH

“do

where H 1s the Hamiltonian and @ the flux. Write the current operator / in the coordinates representa-

tion. (d) Calculate the expectation value of / in state y,. Find the relation between the energy and the

current of the state v,

(9.17.1)

(a) Using (9.16.15) we can easily see that the energy’s eigenvalues for the electron depend on @; thus, in contrast
to classical mechanics, in quantum mechanics a particle can be affected by a magnetic field even when the
magnetic field is zero in the region in which the particle moves. This surprising phenomenum is known as the
Aharonov—-Bohm effect.

(b) The energy eigenvalues are ,

fi
E, =
2mR
The ground states depend on @ (or ®/®). For -1/2 <®/d < 1 /2, the minimum energy in (9./7.2) cor-
responds with n = 0 (Fig. 9-2). For &/, > 1/2 , the value n = 0 is no longer the minimum energy (the ground

i & 3 3 & 5
state). For 5 < (-5 <5, the minimum energy in (9./7.2) corresponds to n = 1. For 5< (—50 <3 W,os is the

O 2
2(n—[—50) (9.17.2)

-1 +1
ground state, and so on, For —5— 7 <P/ D < 5 the ground state is . So the ground state is periodic in
@ /P, with period 1, as shown in Fig. 9-2.

E ground stale

4
\ /\ N )

-5/2 —2 «3/2 —l -1/2 12 1 3/2 2 572 /b,
n=-2 n=-1 ! n=0 n=1 : n=2
ground state - groundstate @ ground state  ground state ;.  ground state

Fig. 9.2
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(¢cy Using (9.1/7.1) and (9.16.8) we have

I ;( 0 52)2 _L( e )( l 52)
I= Lafb[szz —! 0 c2n jl T mR: “Znc _[ﬁatb_c‘zn

ch (9 & 9.
41fl'.:"mR2(la¢h(I:'oJ (917.3)
(d) The expectation value of 7 is
2n 2
* -in eh N a mn
| Dy = I Wi (0) [7y, (9)1 R db =J e “[4nszz][(za—q,—¢/¢o)e ﬂR do
0 0
eh eh
= 21tmR(" b/Dy)y = ——k(nu(b/d)o) (9.174)
From (9.17.2) and (9.17.4) we obtain
m(”)(n
E, = 1S (9.17.5)

Supplementary Problems

9.18. Consider an electron in a region of a constant magnetic field of 1 gauss in the z-direction. Assume that the electron
ic n-\ avery laraa haoy Ny <t ] <v< and N < </ What i¢ tha numhar of ctate nar nnit araa (in tha yu_
isinaverylargebox, 0Sx <L, ~-L <y<L  and 0<z<L . Whatisthe number of state per unit area (in the xy

, N 1
plane)? Ans. Accordingto (9.10./1), n = area = 80—.

B B
9.19. Solve Problem 9.8, but now use the symmetric gauge, A = (-—Ey, 3%, 0). Show that the eigenvalues in (9.8.16)

1 gB \? gB }?
are the same (as they must be). Ans, H = ﬂ[ P50y ) H\p,- 50k +p_?].

9.20. Using formula (9.9.2) solve Problem 9.3 for a charged particle with spin and a magnetic moment {, .

] 2
Ans. (@) H = 2—m(—iﬁV—%A) —u.-B. (D) pry) = w¥(ry(ry).

A W, .
() s = rm(w*Vw—Ww*)— m%.Aw*wTVx (y*Sy). (9.20.1)

9.21. Conductivity is defined by

o= (9.21.1)
where (i, is the total current per unit length and V is the electric potential. Consider Problem 9.12. In this case,
E = Ey and ¢ = -Ey,so V = 2EL . The total current in the x-direction1s (i,,), = Ni,, where N is the number
of states in a complete Landau level, Wthh is given in (9.10.10). Find o for this case. Ans. © = e/h.
9.22. Consider the following harmonic oscillator Hamiltonian:
I 2
H, = E(pi+pf+pf) —imo)(z)(x2+y‘) (9.22.1)

(a) Is it possible to find a basis of eigenstates that is common to H, and L,? (b) Assume that the oscillator has a

1
charge of ¢ and is placed in a region of constant magnetic field B = B,%. Use the gauge A = ~3F % B and find the

corresponding Hamiltonian of the system.
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Ans. (a) Yes, since [H, L] = 0.
Loy 2oy, L [(qBo)z 1, ) [(4302 1, ) 9B,
(byH = m (p,+p-+p) + 3m S ) tamag x5 ) Hamiey yt i+ 5 (p,y —Pyx).
Refer to Problem 9.22. (a) Is it possible to find a basis of eigenstates that is common to L_ and the Hamiltonian of
9.22, part (b)? (b) Are the eigenstates of part () also the eigenstates of part (a)?
Ans.  (a)y Yes,since [H,L.) = 0. (b) No,since [H, H,| #0.

Consider a hydrogen atom placed in a constant magnetic field of 10* gauss. Calculate the wavelengths correspond-
ing to the three transitions between the levels 34 and 2p.

eh eh %
Ans. E,=AEy; E,=AEy+5, 7B Ey=AEy, -5 —B. A = 6500 Ajh,, = 6500+ 02A.



Chapter 10

Solution Methods in Quantum Mechanics—Part A

10.1 TIME-INDEPENDENT PERTURBATION THEORY

The quantum mechanical study of a conservative physical system (whose Hamiltonian is not explicitly
time-dependent) is based on the eigenvalue equation of the Hamiltonian operator. Some systems, for example,
the harmonic oscillator, are simple enough to be solved exactly. In general, the equation is not amenable to ana-
lytic solutions and an approximate solution is sought, usually using computer-based numerical methods.

In this section we present the widely used time-independent perturbation theory. The approach of this
method is often encountered in physics: We begin by studying the primary factors that produce the main prop-
erties of the system, then we attempt to explain the secondary effects neglected in the first approximation.

Perturbation theory is appropriate when the Hamiltonian H of the system can be put in the form

H = H,+AW (10.1)

where the eigenstates and eigenvalues of H,, are known and A is a parameter. The operator AW must be “much
smaller” than H,, that is, the relation AW «H,,ie., A « 1 must hold and the matrix elements of W are compa-
rable in magnitude to those of H,,. More precisely, the matrix elements of W are of the same magnitude as the
difference between the eigenvalues of H,.

The Unperturbed State: We assume that the unperturbed energies (that is, the eigenvalues of H, ) form a dis-
crete spectrum E , where p is an integral index. We denote the corresponding eigenstates by |¢ 'y, where the
additional index { dlstmgmshes between the different linearly independent eigenvectors correspondmg to the
same eigenvalue in the case of a degenerate eigenvalue. We have

iy _ i
where |¢;) form an orthonormal basis of the state space,
[ _
AT

D2 @) = 1 (103)

Possible Effects of the Perturbation: When the parameter A is equal to zero, H (A)is equal to the unperturbed
Hamiltonian H . The eigenvalues E () of H (A) generally depend on A. Figure 10.1 represents possible forms
of the variation of energy levels with respect to A.

In the case of a nondegenerate energy level, the perturbation may either affect the energy level (E , inFig.
10.1) or not affect it (as in case of E, ). For a degenerate energy level, it is possible that the perturbation “splits™
it into distinct energy levels, as in the case of £, in Fig. 10.1. We say then that the perturbation removes the
degeneracy of the corresponding eigenvalue of H,. The perturbation may also leave the degeneracy of an
energy level, as in the case of Eg in Fig. 10.1.

Approximate Solution for the Eigenvalue Equation: We are looking for the eigenstates |y (A)) and eigen-
values E (A) of the Hamiltonian H (A):

H(M Iy ) = E(M)IvA) (10.4)

175
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E(\)
Eg ::::,‘--__, e
£3
£3
— /-
£}
0 A, A

Fig. 10-1

We shall assume that £ (A) and y (L)) can be expanded in a power series of A in the form

E(M) =g +Ae,+ - +A'e, (10.5)

Iy (A)) =10y + AILy + -+ + A7 g) (10.6)

When the parameter is equal to zero, we have the energy level and eigenstate of the unperturbed Hamiltonian.
When A « 1, each element in the series expansions (/0.5) and (/0.6) is much smaller (in general) then the pre-
vious one; in practice, it usually suffices to consider g)nly the first few elements. The element containing A is
called the first-order correction, the one containing A” is called the second-order correction, etc.

10.2 PERTURBATION OF A NONDEGENERATE LEVEL

Consider a particular nondegenerate eigenvalue £, of the unperturbed Hamiltonian, with eigenvector o,
(this eigenvector is unique to within a constant factor). We now give first- and second-order corrections for the
energy level and corresponding eigenvector (the derivation is given in Problem 10,1).

EM) = E::+7L(¢n|W|¢")+7L2ZZ|<¢ | |¢,,

p#En ¥

3

+ O\ (10.7)

W, A) = 10,) + AZZ |¢ i)

pEn i

<¢"|W|¢ Y9! IWlo,) CAEATCAVIE R
A2 - L L Ny o3 10.8
DM e +ZZ(E T g | P ow s

pxn i ' E X
Note that the first-order correction for the energy level is simply the mean value of the perturbation term AW
in the unperturbed state |¢,) .
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10.3 PERTURBATION OF A DEGENERATE STATE

Assume that the level Eg is g, -fold degenerate. We present a method for calculating the first-order cor-
rection for the energies and the zero-order correction for the eigenstates. The derivation is given in Problem
i0.8. ' ,

Arrange the numbers (q;’ |W|¢') ina g, X g, matrix (i is the row index and /' the column index). This

matrix, which we denote w , is “cut” out of the matrix that represents W in the {|¢ >} basis. Note that w

is not identical to W; it is an 0perator inthe g, -d1mensronal space corresponding to the energy level E

The first-order corrections El of the energy level E are elgenvalues of the matrix W'". The zero-order
eigenstates corresponding to E are the eigenvectors of W( Let E| (j=1,2,...ft1) be the roots of the
characteristic equation of w (that is, the eigenvalues of w'" )) The degenerate energy level splits, to the first
order, into ft!) distinct sublevels:

E, (A = E)+ A€, j= 12, fh<g (10.9)

When fi = g, we say that to first order the perturbation W completely removes the degeneracy of the level
F . When f(U < g, the dP(rPan(‘v is nnlv nm‘tm]lv ernved or not at all if f(] = 1.

Suppose that a specrﬁc sub]evel E, (l) E +l€] is g-fold degenerate in the sense that there
are ¢ linearly independent eigenvectors of w! correspondmg to it. We distinguish between two com-

pletely different situations:

I.  Suppose that there is only one exact energy level £ (A) that is equal to the first order to E, ;. This energy
is g-fold degenerate. [In Fig, 10.1 for example, the energy E (A) that approaches E when 7L — 0 is two-
fold degenerate.] In this case the zero-order eigenvector |0) of / (A) cannot be completely specified, since
the only condition is that this vector belongs to the g-dimensional eigensubspace of H (A) corresponding
to £ (A). This situation often arises when the H,, and AW possess common symmetry properties, implying
an essential degeneracy of H ().

2. A second possibility arises when several different energies £ () are equal to first order to £, ;- The dif-
ference between these energies appears in calculation of the second or higher orders. In this case an
eigenvector of H (L) corresponding to one of these energies certainly approaches an eigenvector of £ nj

for A — 0; the inverse however, does not hold.

10.4 TIME-DEPENDENT PERTURBATION THEORY

Consider a physical system with Hamiltoman H,,. We assume the spectrum of H,, to be discrete and
nondegenerate (the formulas can be generalized to other situations). We have

H()lq)n) = Enlq)n) (1010)
Suppose that H, is time-independent but that at t = 0 a time-dependent perturbation is applied to the system
H = Hy+ AW (10.11)

where A is a parameter, A « 1, and W(¢) is an operator of the same magnitude as ,,, and zero for r < 0. Sup-
pose that the system is initially in the state |¢), which is an eigenstate of H, with eigenvalue E,. We present an
expression for calculating the first-order approximation of the probability £,.(r) of finding the system in another
eigenstate |9, of H, at time 7. The derivation of this expression is given in Problem 10.12.

2 2

k t
Pty = J.Oe'mf"(oﬁ(t') dr (10.12)
where w,; is the Bohr angular frequency, defined by
E-E;
0= —% (10.13)

and ;7 (1) is the matrix element of W (¢):
Wa = (oWnley (10.14)
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Consider now the case of transition between a state |¢,;) and a state |0y > of energy E, belongmg to a con-
tinuous part of the spectrum of H,. In this case the probability of transition at time ¢, is actually
a probability density. That is, we must integrate the probability density over a range of final states in order to
give a physical prediction.

The time-dependent perturbation theory can be applied to this situation. One very important result is
Fermi’s golden rule. This formula relates to the case of a constant perturbation. It can be demonstrated that in
this case, transitions can occur only between states of equal energies. The probability density £, of transition
from |¢,) to |¢f) increases linearly with time, and

dp ,‘(t) 2
W= —I= = Tl W) p(E) (10.15)

where p(E)) is the density of the final states.

Solved Problems

10.1. Derive the formulas for the first- and second-order energy corrections for a time-independent perturba-
tion. Also, derive the first-order cotrections to the eigenstates. Assume that there is no degeneracy.

We write the Hamiltonian in the form # = Hy+ AW, where H is the Hamiltonian of the unperturbed system
and W is the perturbation (A « 1). We assume that the eigenstates |y(A)) and the eigenenergies E(A) of the per-
turbed system can be expanded in a power series of A:

[y = [0y + A1)+ -+ Alg) (10.1.1)

and
E(\) = gy+Ae, + -+ + At (10.1.2)

q
Substituting into the Schrédinger equation we obtain

(H,y + AW) Zx"m) - zx' qu) (10.1.3)

g=0 q =0 q=0

Then, by equating the coefficients of successive powers of A we obtain

Hl0) = g4|0) (10.1.4)
(Ho-gppi)+ (W—-£)|0) = 0 (10.1.5)
and
(Hy-e) |2+ (W—g) 1) -g,J0) = 0 (10.1.6)
For the nth order we obiain
(Hy—ep)lmy+ (W—g)ln-1)-gJn-2)+----¢,|0) = 0 (10.1.7)

Note that we are free to choose the norm and the phase of hy(A)), so we require that [yw(A)) is normalized and that
its phase is such that the inner product (O] w(})} is a real number. This implies that

1
(0|0 =1 (O] = (1| = 0 (0|2) = (2|0) = —5(1|1) (10.1.8)
For the nth order we obtain
1
(0|n) = {(n|0) = S (=T +(n =22+ + (2|n-2) + {l[n - 1)) (10.1.9)

Note that when A — 0, we bave g, = E,(IO). Using (10.1.4), we conclude that |¢,,) is proportional to |0); therefore,
we choose |¢,) = [0). Multiplying (10.1.5) on the left by (¢ |,

(0,|(Hy—€ | 1) +{0,[ (W-€)|0) =0 (10.1.10)
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Jh
[—}
B

The first term in (/0.1.10) is zero; therefore,

(0,IWI0) = (¢,Wo, (10.1.11)

il

8I
For the first order we have
EM = EY +0{0,|W|¢,) + O ) (10.1.12)

We see that the first-order correction to the energy is simply equal to the mean value of the perturbation term W in
the unperturbed state |¢,). Multiplying (10.1.5) by the basis vectors (¢I,| we obtain

(0,| (Ho— E)[1) +¢0,| (W=£,)]0,) = 0 (p#n) (10.1.13)

This leads to the equation

()"~ ™) (8, 1) + (0,IW0,) = 0 (10.1.14)
where we used the orthogonality of the basis vectors. Then,
1
(0,|0 = = £0 (0,IWlo,) (p#n) (10.1.15)
E’Y - n
Since (¢ﬁ!1) = (0|1) = 0, we arrive at
(6,1Wl9,)
Iy = ZE(O) _E(nﬂ) |¢,,) (10.1.16)
pEN

Therefore, to the first order, the eigenvectors |¢,(A)) of H that correspond to the unperturbed state I¢,,) can be writ-
ten as

(0,IW6,)
W00 = 10,3+ 1D I+ 00%) (10.1.17)
H p

pPEN

To obtain the second-order correction of the energy we multiply (10.1.6) by (¢,I:
] 0y |
(¢,,| (H,-E, )|2) + (¢n| (W —81)|1) —82<¢n|¢") =0 (10.1.18)
This leads to €, = (¢,|W|1). Substituting (/0.1.16) for |y(A)) we arrive at

%
e, = ZM (10.1.19)

0
Es ) mE(
d r
pEn

Therefore, to the second order, the energy is given by
2
[{0,IWl¢,)]

EM) = B + 1o, Wo) + A2 Y it + 00 (10.1 20)

¢4
p#r !

Consider a particle in the two-dimensional, symmetrical, infinite potential well. The particle is subject
to the perturbation W = Cxy, where C is a constant. (¢) What are the eigenenergies and eigenfunctions
of the unperturbed system? (b) Compute the first-order energy correction. (¢) Find the wave function of

the first excited level.

(a) For the unperturbed system, the wave functions and eigenenergies are (see Chapter 3)

0 2 (nn,x] ) (nnzy)
Yo, (% ¥) = Fsinl —7 Jsinl ~F (10.2.1)
2,2
w _ &R 5
Enl.n2 = 2mL2("1+"2) (10.2.2)
(b) The first-order correction to the energy is given by
AE,, = (yp, Wy, ) (10.2.3)

Thus,

ac’ . (ﬂn. )2 - [ﬂm)z L’c
n]‘”2=? x sin{ x dx ] vysin T dy=T (1024)
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(¢) In order to find the wave function of the first excited level we compute the following matrix elements:

|
WSIWle D) = () Wy ) = gL°¢ (102.5)
and
256
) = WD = S (102.6)

Thus, the eigenvalue equation can be written as

1 256
4 4 u
120 CIEN RN Y (10.2.7)
256 1 Uy Uy
g1n* 4
h A (l + 256 )LZC2 d 1 L or L ! Note that as the first excited
where =|z+— and u, = —, u, = ~—oru, = ——,u, =-—""-, s the fi ite
1,2 4 81’ 1 ﬁ 2 »\/i 1 ﬁ 2 »\/i
level is twofold degenerate, there are two solutions for the wave functions:
(1 (10.2.8)

1 0 0 1 0
Y O N L (U}

10.3. Consider a harmonic oscillator with a force constant & and a reduced mass m. The small perturbation
W = ax? is applied to the oscillator. Compute the first-order correction to the wave functions and first
nonvanishing correction to the eigenenergies.

H=H +W=—~5=5 +5kx? 3 (10.3.1)
The eigenenergies for the unperturbed Hamiltontan are E,(,O’ = (n+1/2) o, and the eigenfunctions are given by

} 1
Oy = |— ﬁe'“*‘z/zﬁn(ﬁx) (10.3.2)
2°nINT

where 0= m®/# and H, are the Hermite polynomials. Note that when we compute the first-order correction E\",
we obtain an integral with an integrand of an odd function; the integral therefore vanishes and we have the result

EN = (n‘ax3|k) = 0. For the second-order correction we obtain
) 2 2 2 2
O = [(nlWlk|” [(alaxtln + 3 [¢alaxiln+ DT [nlaxdn= 1" |(alax®ln-3)] 1033
T 2 ® 0 p 0 20 T p0 YL a0 Y o0 a0 (10.3.3)
k¢"c‘n Ly Ly TEpes Ly T Epi n Enoi Ly TEp_y

2
Note that this result can be obtained by using the relation |(n|ax3|m)‘ = az (n;lek) {k|x|m). The required

matrix elements are &

(okorln +3) = atoliln +2) (n-2in 3 = o [ P (10.3.4)
} 3
(nlax3ln +1y = a[(lz|x2ln +2{n+2x|n+1) +{n x3|n)(n|x|n+ 1)] = 3a % (10.3.5)
f 3
(n|ax3|n— 1) = a(nlx2|n—2)(n—2|x|n— l)+(nlx2|n)(n|x|n— 1) = 3a & (10.3.6)

and

(nlax3|n—3) = a(n|x2|n~2)(n~2[xln—3) =q }"(L;—)a—gn—_ﬁ (10.3.7)
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Substituting into (/0.3.3) yields

15a* ( 11
(2 _ _ 2 1t
E = oo n +n+30)) (10.38)
The same matrix elements are required to calculate the first-order correction to the wave functions; hence, we obtain
| (kW) [* o . _a [Llamn-1D(n-2)
9, = ¢, + E@_ E(0’¢* 0@ =9, *370al3 Yo 0,3+ 0@
kzn
n (o) n+1 (0) -1_ (H+l) (f’l+2) (ﬂ+3) 0)
+3n f§a¢n_l-3(n+l) Sa P13 7 o), | + 0 (10.3.9)

10.4. Consider a particle of mass m in a one-dimensional infinite potential well of width a:
0 0<x<a
V) = | otherwise (to41)
The particle is subject to perturbation of the form
W(x) = awyd(x-a/2) (104.2)

where a is a real constant with dimension of energy. (a) Calculate the changes in the energy level of the
particle in the first order of ®,. () This problem can be solved without using perturbation theory; find

the exact solution. Defining k = J2mE/ f'zz, show that the possible levels of energy are given by one
of the following equations:

O
sin| 5 ) = or tan 3 _—ma(oo (104.3)

How do these results depend on the absolute value and sign of ®,? Show that for w, —» 0 one obtains
the results of part (a).

(@) For the unperturbed system the energy eigenvalues and eigenfunctions are given by

a _ g . [Ttnx) (0 _ n’hin’
Y,(x) = ﬁsm R E = — (10.4.4)
The first-order corrections of the energy eigenvalues are given by
“ 2w n odd
() _ (0 Oy 2l . 2(”__’”) (._9) - { 0
AE, = Ly, Wy, = ajosm p aw,d| x 5 dr = 0 1 even {10.4.5)

(b) Turning now to the exact solution, we divide the well polential into two regions: I and II, as shown in Fig. 10-2.
The wave function for region I is yy(x) = Asin (kx), and for region II, y,;(x) = Bsin[k(a-x)].

V(x)

II

1
1
1
|
1
i
'
1
t
i
i
i
I
P
1
|
'

af? a X

Fig. 10-2
From the boundary condition y,(x = a/2) = y,(x = a/2) we have A = B. Using the normalization condition

j |\|;(x)|2dr = | weobtain A = B = 4/27n/a’. Hence, from the discontinuity relation between the derivatives
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i (x = a/2) and g (x = a/2) we obtain

2n1 . W' l+e 2 -
Vi(x=a/2) = yy(x=a/2) - lim W(x) L Nin (kx) dx
¢

ﬁz em0d
2m .
= Wy =as/2) - e J2aw, sin (ka/2) (10.4.6)
2maw,

Therefore, k& cos (ka/2) = —k cos (ka/2) — ff sin (ka/2).s0

2

2maw, Bk
2k cos (ka/2) = - € sin (ka/2) = tan (ka/2) =

_mamo (104.7)
For sin (ka/2) = 0. we obtain the unperturbed solution corresponding to & = 1mn/2, where » is an even number.
As @, — 0 we get —hi"/maw, — teo, which from (/0.4.7) occurs when ka/2 = n/2 + nm,or k = mn/a forodd
n. We introduce == —ka/2 + nn/2, where n is an odd number. In this case. tan (ka/2) = cot z. Using the expan-
sion of cot x in the vicinity of zero we can write

- N 52

T e L s
cotz=7 = Tn/2—kas2 - MM T) S maw, (10.4.6)
Note that the last equality comes from (/(.4.7). Therclore,
> [ mn 2moy,
Kl h-=%5"=0 (10.4.9)

ﬁ-

i ©tn ) 8ma, . .
and k, , = 5 t \ = ) + —5— |. Using the expression

tr
1 wn A/(J}_Q\E Smo, |

k= 5\ RN Gl s P J (i.4.10}
€ .
and the expansion /1 + € = 1| T (€ « 1) we obtain
1 h a VP8m n 2m
k:i(M+— ]+[—J _’%):_n+_7(u(, (104.11)
a 4 n h” 4 mfitn
The energy eigenvalues are therefore
ﬁzki‘ PRI
E, = 5= +2u, (10.4.12)
' "o dma”

The first term on the right-hand side of (/(2.4.12) corresponds to the unperturbed energy eigenvalues, and the second
term 1s the first-order correction that we obtained in part (@),

Consider a particle with mass 1 in a two-dimensional square box of length L. There is a weak potential
in the box given by

Vigy) = V(,LZS (x=x,) 0 (y—¥,) (10.5.1)

(a) Evaluate the first-order correction to the energy of the ground state. (h) Write the expressions for the
second-order correction to the cnergy, and the first-order correction to the wave function of the ground
state. Explain how you would calculate the expressions for (x,, y,) = (L/2,L/2).(c)Find an expres-
sion for the energy of the first excited state to the first order in V. What is the difference between the
energy sublevels for (v, y,) = (L/4,L/4)? (d) For the first excited state, find the points (x, v,)
defining a potential V(x, y) that do not remove the degeneracy. Explain your result in terms of the sym-
metry of the problem.

(@) The eigenfunctions and eigenenergies of the unperturbed state are (see Chapter 3)

(m( ) 2 (H" ] . (Ttk ) E((n T h ( 2 kz (105.2)
X, V) = 7sIn| X jsinl 7y = s(n + k& 5.
v : L L- " amL? )
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- . 0 0 . .
The ground state is nondegenerate, but since £ I(Z) = EZ(I ', the first excited state is degenerate. For the ground
state, the first-order correction of the energy is

Lal
4 r nx Ty
E(l) = |[0)|V||l([))\ = — s1 2( )Sinzr _) )V Lzal’x—x,\ﬁf\:_\:,\ rdv
11 \ } \ / A% J \ r

LI B g B A lJ J e f r [ 0] S LOF S
Tx ny
= 4V, smz( Ln]sm ( LO) (10.5.3)
(b) For the second-order correction of the energy of the ground state we have
(0 (0
£® _ Z u vyt
n - 0 0
EI! Er[lk)
mk
(nky 21, 1)
2
4 nnx Rk T
—ZJ‘J.sm(T)sm(—LX)VL d(x—x)d(y—y) sm( )sm(zx)d.r dy
- - nf-ﬁﬁ 5
n ok —(2-n ’k )
(n k) + (1, 1) 2mL’
[ (nnxo) (Tckyo) (Ttxo) [Ttyonz
4Vysinl —— )sin\ —5— Jsin\ — /sin| 5~
L L L L
= 2 Py (10.5.4)
LA,
nk 5(2—-n"—k*)
(k) # (1, 1) 2mlL

When (xg, y,) = (L/2,L/2) we obtain

(2 o i'\?/ sin 2 32V2mi 1
E® 2' = 2 — (10.5.5)
] 2# TR (2-n—k%

n, k (2—n2—k2) odd n, &
F
(nky = (1, 1) 2ml (kY= (1,1)

For the first-order correction of the ground state we have

w2y Dy
O - LS

R E Enl
Lk
(n by #¢1.1)
[ 4 . Ax Y . ny 2
2 e J‘J‘EZsm(f]sm(T]VoL d(x—x)d(y-vyy
—2-at=kHt
2mL

(n‘.k)z(l,l)

o)l (2]
X sin| 7 Jsin| dr dy Jzsin\ L sin{ 7

TCX Ttyo TU’U(O TCkyo
5 I, o
sin

= 7sin| —5— e 10.5.6)
PR (2 —n?—k?) L L L (
n, k 2
(mky = (1, 1) 2mL
We turn to the case where x, = y, = L/2. We substitute n = 2p+ 1 and & = 2¢g + 1 and obtain
4mLV, . 2p+)m 2q+ )¢
v Z — (-1 qsin[( pL) x}sin[( qL) y} (10.5.7)
ﬂzﬁ (P +q +p+q)

p.a=
. . 0 0 . . .
(¢) The first excited state is degenerate, El(z) = Ez[, T according to Sec. 10.3, the secular equation will be

(h
Vien—Ep Viz e =0 (10.5.8)

(h
V21,|2 VZl,Zl - Elz
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Thus we obtain
(
El(2) 3Vt Voot '\/(VIZ = Vo) +4Vial] (10.5.9)
where V,,, = {n|V(x, y)lm) and
nhx nky nix n
Viim = 4V, sin( 3 O)Sin(T[))sin(—Eg)sin(—zﬁ) (10.5.10)
For x, = yo = L/4 weobtain Vi, |, = V|, ,, =V, 5 =V, 5 = 2V, 50
iy _ 1 2 2 0
E, = §[2V0+2V0i A/(ZVU—ZVO) +42Vy' ) = av, (105.11)
(d) The degeneracy will not be removed if
V=Yoo 4Vl = (105.12)
Thus,
X 2ny, 2nx ny, \1? nx,\? 2Zmx Ty ny
Lsma( LOJSW( I )—-sinz( Lg)sinz(f)} +4sii‘|(T0) Sinz( 3 0)5112(—[9)si12\ 7 0) =0
S0

X 2ny 27x, Ty
sm2( Lo)sinz(—L 0)+ sinz(“"‘—L ]%mz( L (10.5.13)
Hence, each of the variables x, and y, canassume the values 0, L, and L/2; altogether we attain nine points

in the two-dimensional box. These nine points are the only points where the symmetry of the system is not
removed when the perturbation is applied

. Consider

2 22
2p_m mu;i 0<r<a

Y = (106.1)
?
m r>a

where r = «/x” + y”. Use the second-order perturbation to find the corrections to the ground state
energy.

One can write the Hamiltonian in the following form

2

H = —é’r—n+§mafrz+vu-) = H,+V(r) (10.6.2)
where the perturbation is
0 0<r<a
V= {—771(102r2 /2 r>a (106.3)

2
The wave function of H, for the ground state is ¢q,(r) = [= J;exp[ XZJ’ where A = JA/mw and
2
0) .
£ - ho.

= Aw. (In the function @, one of the zeros corresponds to an eigenfunction of the unperturbed Hamiltonian,
and the other zero corresponds to the ground state.) For the first order in V we have

5 I ,1 . PR ﬁwr 17
EO:ﬁm_PJ (zmmr exp( J dr = ho — >~

N 2\
r r
ex + = (10.6.4)
2 { p[ J[ sz J
2
]e p( mﬁ ) This result is valid for %® « mw’a’. In the second order, the first

state that contributes to the energy correction is ¢, () at energy 3%, yielding the contribution

o0

hw 2
or E,= ﬁm—T[l +m(;:a
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> 2
_l r 1 /] P
‘%wU w25 )%"”df]= m{?ﬂ){p[{l” }

4

r’zmr / mma2 \f mwa W *w’d’? ik
= - 1+ (10.6.5)
8 f
Hence, we obtain approximately
fiw mwa’ moa’ ko mod® mlod | 2moa’
Ey=ho-—5 1+T eXp\——3— )~ g 1+~ﬁ—+-—~ﬁz— exXpl——% (10.6.6)

Note that this analysis is incorrect only if £>m o'a’/2,

10.7. Consider now a three-dimensional problem. In a given orthonormal basis the Hamiltonian is represented
by the matrix

(1 0 0\ (0 C 0\
=103 0}, ¢ 00 (10.7.1)

0 0 -2 0 0 C

J

Here H = HO+ F]l and C is aconstant, C « |, (@) Find the exact eigenvalues of A (b) Use the second-
order perturbation to determine the eigenvalues. (¢) Compare the results of parts (@) and (b).

(@) The eigenvalues of H are the roots of the equation det (H-AH=0
’ 1-4 C 0 ’

i=] C 3-4
o

0 C—2~7\\

Thus A = C~2, 2+J1+C*

(b) The second-order correction to the energy may be writtenas £, = E + E " + E¥, or

-
I-[Il\ Hi(l

(B = (Ha + (Hi +2r (10.7.3)

()
E,
k#r

It can be seen that (H )n = 1, 3,and -2. The first-order energy correction is given by H11 =0, sz =0,
and Hsz = C. For the second correction we have

2 _ H H H'3H3' _Cz 9_ Cj 1
£y = O E(O) FO_p® T 2737772 (1074
| 1 1 1
£ H,H, HyHy, _ c’ Q_O_Cj 10.7.5
2 _E(O) E“])+E;‘”—E3(m_3_l+ 3 72 (10.75]
and
H)\H, HH,
2 ait s 3261 23
Eﬂ) _ c))l — - (10.7.6)
BV &) B R
B Thus,
c?
£ =1-S (10.7.7)
2
E, = 3+% (10.7.8)
and

==2+C (10.7.9)



186

10.8.

10.9.

SOLUTION METHODS IN QUANTUM MECHANICS—PART A [CHAP. 10

(¢) Weexpand 2 £ 1+ C? in a binomial series:

1, 1 1
21-«/1+C2=21(I+QC“+---):3+§C2, 1-5C* (C*« 1) (10.7.10)

=
(743
_—
b
D

This gives the same resuli o the second-order corrections

Derive the first-order correction of a degenerate state according to perturbation theory (Section 10.3).

We assume that the energy level £ is g-fold degenerate, so we have g orthonormal vectors |¢:,) such that
4 &
Hylo,» = E,,M’,) (10.8.1)

We add a perturbation AW to the Hamiltonian H,, and we seek the possible energy levels € corresponding to the
first-order correction state |0):

[H,+AW]0) = (EP+K£)|O) (10.8.2)
We have
(95IW10) = €<o}|0) (10.8.3)
Using the closure relation for the basis { Itb[’:)} we obtain
D wiwlep<ai]or = ecorlo) (108.4)
PR

Since |0) is an eigenvector of H,, with the eigenvalue £, itis orthogonal to every |¢::) for p' £ p, so

2<¢¢,lwi¢,‘,'><¢§;|0> = &{¢4[0) (10.8.5)

el
We define the matrix { W’} by
W, = (6,IWe) (10.8.6)

Equation (/0.8.5) is equivalent to the vector equation WP|0) = g|0}. Therefore the possible values of € are the solu-
tions of

detw’-aly = 0 (10.8.7)

Consider an electron of mass m in a three-dimensional box with energy 3nhi/ma’. A weak electric
field in the z-direction and of strength € is applied to the system; the perturbation is then W = eez.
Compute the first-order correction to the electron’s energy.

A free electron in the three-dimensional box has energy ®°A%n%/2ma*; and so n? + n? + nl = 6. Three vec-
tors satisfy this condition:

(ntsn,-)n;) = (l’ ]12) (n\-n_w n_-) = (]’2’]) (n\' n_\-)n:) = (27 11 l) (IOQIJ

The state is therefore threefold degenerate. The wave functions for these three possibilities are

8 . (nxYy (myy). (2m:

Oz = /;sm(z)sm[z)sm(T) (109.2)
8 . (mx) . (2ny) . (m

bizy = .f;““(?)““(?)“"(?) (1093)
8  (2mrx) . (my) [nm:z

o, = ff—;sm(TJsm(zy)sm(;) (10.9.4)

Note that (2, 1, 11z]2, 1, 1} = (1,2, 11211,2, 1) = {1,1,2[z[1,1,2) and

a o d @
8 2r n n 2
(2,1,1)212,1, 1) = (‘;‘1‘[ sinz( Tx]dx‘[ sinz('a—”deyI zsinz(zsz: = EJ zsinQ(T':I—Z)dz = % (10.9.5)
0 0 0 0

[S]

and
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10.10,

10.11.

It can be similarly shown that (2, 1, 1]z]1,2, 1) = (2,1, L|z|1, 1,2} = (1,2, 1]|z]1, 1,2) = 0. Thus all the off-
diagonal matrix elements vanish and the energy is given by

3 2ﬁ2
F=2t : +%’ (10.9.6)
ma

Consider a hydrogen atom placed in a uniform static electric field € that points along the 2 -direction.
The term that corresponds to this interaction in the Hamiltonian is

W = —egz (10.10.1)

Note that for the electric fields typically produced in a laboratory, the condition W « H,; is satisfied. The
appearance of the perturbation removes the degeneracy from some of the hydrogen states. This phenom-
enon is called the Stark effect. Calculate the Stark effect for n = 2 in a hydrogen atom.

Before we explicitly calculate the matrix elements of the perturbation, we note that the perturbation has
nonzero matrix elements only between states of opposite parity; as we are considering level # = 2, the relevant
states are those with / = 0 and / = 1. Using symmetry, the m-values of the two states must be equal. Therefore,

2s 2p,m =0 2p,m=1 2p,m=—1
0 {2s|W]2p,m=0) 00
wo=| @pm=0W2s) 0 00 (10.10.2)
0 0 00
0 0 0

An explicit calculation gives {2p, m = 0|W|2s) = 3ea,g, where a, is the Bohr radius. Note that the matrix ele-
ment is linear in €, so this correction is called the linear Stark effect. We transform to the basis that diagonalizes
the perturbation; this basis is

1 1
’{'2}’, m= —l), |2p,m = l), 72(|2s, m =0>+ |2p,m =O>)’ -ﬁ (25’ |m = 0>_|2P,m = 0))} (]0]03}

Schematically, Fig. 10-3 depicts how the linear Stark effect removes some of the degeneracy of the n = 2 level.

|
— (125, m = Q) +R2p, m = 0))
V2 ) )

T 2p,m=-Vyand 2p, m=1)

L \%(l2s,m=0}—|2p.m=0))
Fig. 10-3

Consider a planar molecule consisting of four atoms: one atom is of type A and the three other atoms are
of type B; see Fig.10-4. An electron in the molecule can be found in a vicinity of each atom. If the elec-
tron is close to atom A it has energy E . if it is close to any of the B atoms, it has energy
Eém, where E ' < E ! We denote the states by

[1) = (1000) [2} = (0100) 13} = (0010) [4) = (0001) (10.11.1)

{(a) For the first approximation, the electron cannot move from one atom to another. Using the basgis

1QukA 1 00UV 18 RN 04 JLVAE Lol IR W3 4 LS8 UaSis

{11}, 12), 13). |4} }, write the Hamiltonian H,, for this approximation. (b) For the case in which an electron
can move from an atom B to atom A and back, but cannot move from one B to another, we denote by a
the energy associated with the transition from atom A to an atom B, where a « E|. Write the perturbation
in this case. (¢) Using perturbation theory, calculate the second-order correction to the energy of the state
|1} and the first-order correction to the states |2), |3}, and |4}. (d} Calculate exactly the corrections to the
energies of the states. Show that when a « £ one obtains the result of part ().
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(c)

(d)
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(7)o

Fig. 10-4

In the basis {|1}, 12}, (3}, |4)} the Hamiltonian H is represented by the following matrix:
I El(m 0 0 0\

@ 0 0
EZ

H, = 0o o E” O (10.11.2)
(0}

o o0 o E
The perturbation matrix representing the transitions between the state [1) and each of the states (2}, |3}, or |4)
is
0Oaaa
a' 000
a: 00O
lai0 0 0)

The encrgy level E 1(0) is nondegenerate. For the perturbation W the second-order correction is, in accordance
with (/0.6),

W = (10.11.3)

3a’

(03 (0
£\ -E,

4 . 2
[ D)
E](O) _EI(O)

=2

E® = Y+ (1w - =E" + (10.114)

0 . .
The energy level EI( " is threefold degenerate, so we need to use perturbation theory for a degenerate state.
Since the matrix elements of W between the states |2), |3}, and |4) are zero, the secular equation is

0-¢ 0 0
det 0 0-¢ 0 =0 (10.11.5)
0 0 0-¢ )
and therefore —¢° = 0 , and the first-order correction to energy level EZ(O) is zero:
E;” _ E;l)) E\" = E;‘” Eil) = E;O’ (10.11.6)
We see that to the first order the degeneracy is not removed.
The total Hamiltonian is
i)
E! a a a
0
H=| 2 g 00 (10.11.7
. 0 E;") 0 A1.7)
(0
\ a 0 0 & /

To find the eigenenergies of H, we must solve the quadratic equation det (H -A1) = 0. An explicit calcu-
lation gives

(E -2 (B -1 =322 (B -1’ =0 (10.11.8)
or

ED N E® S EP 0 -3a =0 (10.11.9)
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Thus we obtain

1
Ay = 5(( E" + By « J( EY _ EOY 4 124 Ay = E (10.11.10)

We see that the degeneracy level £ ;0) is not completely removed by the perturbation, but it is partly removed.
For a « E](O) we have

_l (0 Oy 4 (O _ p@ 1242
Ma=51 (B + By (E7 —-E) l""("E__O’)Tz

(0 (
1)_E2
1 0) 0 0 0 6d°
55[(51” +E2”) + (E, —Ez”) “’W (10.11.11)
(E," - Ey)
So
342 0 3d?
L= E Oy N =B o (10.11.12)
1 1 El(o) B E;(]) 2 2 E:O) _ E;O)

This is in accordance with the second-order correction for the E ',0) {10.11.4) and the first-order correction for

the level £,

10.12. Derive the transition probability equation for the first-order time-dependent perturbation theory.
Let ¢,(#) be the components of the vector [W(#)) in the {|¢,)} basis:

W)= D c00) o) = (0, W) (10.12.1)

We define W, = (0,|W(n)l¢,). The Schrodinger equation is
d
iﬁaTtW(z)) = [H,+ AW@O] |y} (10.12.2)

By multiplying (/0.1/2.2) by {¢,| and using (/0.]2.1) we obtain

de, ()
g = En"n(”*‘zlwnm)q(t) (10.12.3)
k

Using the Bohr angular frequency w_, = (E, - £,) /# and the substitution ¢,(f) = a (t)e“'E"'/ﬁ, (10.12.3) becomes
g g nk n k ] n

da,(t)
g = LY W ay) (10.12.4)
k

We write b (1) in the form of a power series expansion in A:

a = @+ raV@ R el (10.12.5)
We seek the solution to the first order in A. For 1 <0 we assume the system to be in the state [¢,), so according to
(10.12.1) and the relation between a,(f) and c¢, (1) we have

a(t=0) = 9§, (10.12.6)
If we substitute (/0./2.5) in (10.12.4) and equate the coefficient of A" on both sides of the equation, we obtain [by
using (/0.12.6))
an"
di

it = ze'm""wnk(r)ﬁkf ='W (1) (10.12.7)
.

Equation (/0.7.7) can be integrated to obtain

!
(ly l ® 1 T
a,’(t = o e W (1) dt (10.12.8)

0
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Finally, the transition probability P, (1) between the states |6,y and 6, is, according to (/0.12.1), equal to |cf(t)|2.
Note that a1 and ¢ (t) have the same modulus, and to the first order,

]
f(r)Eaf "0y + ka0 (10.12.9)
Since the transition is between two different stationary states, we have b‘ ‘(t) = 0, and consequently

2 t 2
J "N W () dr

0

P'f(l) i ”(f)l (101210)

where we used (/0.12.8).

Consider a one-dimensional harmonic oscillator with angular frequency ), and electric charge g. At
time ¢+ = O the oscillator is in ground state. An electric field is applied for time 7T, so the perturbation is
W { —qex  Osist (10.13.1)
1) = .
() 0 otherwise
where € is a field strength and x is a position operator. (@) Us.“.g first-order perturbation theory, calcu-
late the probability of transition to the state n = 1. (b) Using first-order perturbation theory, show that
a transition to » = 2 is impossible.
(@) We denote by Fy, the probability of transition from the ground state to n = |; then, according to the first-
order time-dependent perturbation theory,
T 2 2
1
Pty = ;QJ e (1|W0y di| = e'm'U'dtJ () (—4€x) ¢ (X) d] (10.13.2)
0 oo

where ¢,(x) and ¢,(x) are the energy eigenfunctions in the coordinate representation for n = 0 and n = 1,

e Tao I H P ol VR

erpCLllV y U Illg FEsuiis u)r d l]dllllUIllL oscillator we know [nd[ (bcc l..lldplcl' 3)

() e 4(1)
O (x) = lMA/_(::){;{ :l ¢, (x) = nwxgnexp[—i x ] (10.13.3)
A _ ) .
where X, = = Substituting these in (/0./3.2) we obtain
mw
2 ) 2 .
1} [ cOMI (ge)’ [sin(@v'2)7?
P‘”(r) = —z're"“o’(—qe )d: = fe'm‘“' dil = (10.13.4)
2 2mh
£J 2ma, mha, . mhiqy, /2
() To the first order for the transition n = 0 > n = 2 we can write
2
|
Py = pe f 0" (2{W]0) dr (10.13.5)
We have
I3
(2IM0) = (21 (~¢ex)|0) = —ge /5 (2| (' +a)]0) = 0 (10.13.6)

where we used the relation x = p (a+ a‘) (see Chapter 5). Therefore, P%;)(T) = (.

10.14. Consider a one-dimensional harmonic oscillator embedded in a uniform electric field. The field can be

considered as a small perturbation and depends on time according to

e(t)y = A/—é—expli (;)2] (10.14.1)

where A is a constant. If the oscillator was in ground state until the field was turned on at ¢ = 0, com-
pute in the first approximation, the probability of its excitation as a result of the action of the
perturbation.
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Consider the total momentum p imparted to the oscillator by the field over the duration of the perturbation:

) eA ) —wn?
p= e€(t)dt = :/—7»; e dt = eA = const, (10.14.2)

We see that p does not depend on the time constant t of the perturbation. This means that the areas under the curves
of Fig. 10-5 are equal for every T.

£(t)

Fig. 10-5
The probability of a transition from the state » to the state & is given by

o0 2
1 '
P, = ﬁ_z,[ Ve dr (10.14.3)

=y

0%y, (0 . . : 0 0
where V, = j wi,) V\yn( "dx is the matrix element of the perturbation and ©,, = E: )—E,f |/h. Let

—oa

¢, m, and ® denote the charge, mass, and natural frequency of the oscillator, respectively, where x denotes its devi-
ation from its equilibrium position. In the case of a uniform field, the perturbation is given by
Vi, t) = —exe(t) ~x (10.14.4)

The oscillator is the ground state (n = 0), so the nonvanishing elements of the perturbation matrix are

L el 1)
Vip = Vo = _—ﬁ‘—t 2m—wexp[— p } (10.14.5)

Thus, in the first approximation, a uniform field can produce a transition of the oscillator only to the first excited

state. If we substitute (/0.74.5) and ©,, = ©, = |E£(]) —Eio) /h = winto (/0.14.3) we obtain
7 | v [
Py = m cxp':imr—(_-[)z}dt (10.14.6)
: i —ax® I}'_{ 2
Using the identity J e’ dx = [=e P74 we arrive at
p’ I
Py = zm—ﬁ“‘)exp[—i(wt)] (10.14.7)

We conclude that for a given classically imparted momentum p, the probability of the excitation decreases with the
increase of T; so for T » 1/® this probability is extremely small. This is the case of a so-called adiabatic pertur-
bation, On the contrary, for a rapid perturbation T « 1 /@ the probability of excitation is constant. Note that in the
limit T — 0.

limns(r) = Ad(1) = ES(t) (10.14.8)

so we have a sudden perturbation. In this case, the probability assumes the value
2

lim P, = 52

50 T 2mho (10.14.9)

which is equal to the ratio of the classically imparted energy p/2m to the difference between the energy levels of
the oscillator, Aw. The criterion for the applicability of perturbation theory is that the probability of excitation must
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be small compared to the probability that the oscillator will remain in the ground state:

Py« (1-Py) or Py«l (10.14.10)
It is apparent from (/0.74.7) that
2 A 2
L (;m) « he (10.14.11)

is a sufficient condition for (10./4.10). However, if the field’s change is sufficiently adiabatic, that is, T» 1/,
then condition (/0.14.11) is too rigorous and perturbation theory can be applied. (This is if p2/2m is of the order
of hw.)

Consider a linear oscillator in its ground state. Suppose that the equilibrium point begins ata time t = 0
to move slowly and uniformly and at time ¢+ = T it stops. Using the adiabatic approximation find the
probability that the oscillator will be excited. What is the validity of this approximation. (In an adiabatic
approximation one assumes that the perturbation changes very slowly with time. It turns out that for adi-
abatic perturbation, the probability of excitation is very small.)

The Hamiltonian of the oscillator at ¢ 2 0 has the form
Hi = L p2+—lm(1)2 [x—a(t)]2 10.15.1)
2m 2 (10.15.

where a(r), the position of the equilibrium point, is v,z according to the given condition, with v, = const. being
the velocity of the equilibrium point. The instantaneous eigenfunctions of the Hamiltonian (/0./6./) have the form

v (mij : [ ( (t)) A/ [x-a(n)] (10.15.2)
=\ 7k exp x-a x-a 5.
mAS 2%

oH 2
The matrix element of the operator = —mw v, [x = a(t)] computed from these functions is nonzero only for the

o mo vy [x—a(t
transition n =0 — »n =1 (recall that the initial state is the ground state), being equal to

(BH) 5 B
9t hy = MO Vus e (10.15.3)

Evidently, the spectrum of the energy levels of the oscillator does not change during the motion of the equilibrium
point; ie., all the @ are constant. The probability amplitude of the first excited state is obtained by substituting
®, = O, so

(e -1y = iv, 2fz (€ - 1) (10.15.4)

| 2 !
C(y=——mwv
T et W2mo

Therefore, the probability that at time 7 the oscillator will be in the first excited state is

” ml
P =IlCcal = —II-nglw;\\ (10.15.5)
n =18 IO { ’
Note that this probability oscillates with time. Thus, the probability of excitation for 1> T is
mvz
P(T) = 7o (l —cos (o) ) (10.15.6)

For the adiabatic approximation to be valid, the inequality P (T) « I must hold for all . This is equivalent to the

condition
f10)
Vo< T (10.15.7)

Consider a hydrogen atom in its ground state at time ¢ = 0. At the same time a uniform periodic electric
field is applied to the atom. (@) Find the minimum frequency that the field needs in order to ionize the
atom. (b) Using perturbation theory, find the probability of ionization per unit time. Assume that when
the atom becomes ionized, its electron becomes free.

(a) The equation for the transition probability per unit time from a state in a discrete spectrum to a state in a con-
tinuous spectrum, under the action of a periodic perturbation, has the form
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2
dP,, = TVl 8(E,~E” —haydv (10.16.1)

nv

where o is the frequency of the periodic perturbation, n represents the set of quantum numbers that character-

a tho ctatac of the dicerate cnactm f"\l is the Pnrracnnnrh ne infinitesimal enerov interval of the conti
1Z€ 10 states Ul {ne Giscrele spectrum, CITESpOonGing infinitesimal energy nterva: of e conlinupus

spectrum, E( is the unperturbed energy level in the discrete spectrum, E,, is the unperturbed energy level in
the continuous spectrum, and V, is the matrix element of the perturbation operator for the considered transi-
tion. The perturbation operator has the form

W=eEw r) = e(E, r)ysin(wr) = Vexp (—ior) +\7*exp (i) (10.16.2)
E,| its amplitude, and V is given by
« ie
vV = EE(,~r (10.16.3)
Note that the &-function in(/0.16.1) assures that the transition takes place only when EV - E;O) -ho =
therefore,
! (o
Onin = 3 (EV—E ) i (10.16.4)
Since the hydrogen atom is in its ground state, we have
4
(Ey—E") pn = % (10.16.5)

which gives us the minimum frequenjj of the electric field needed to ionize the atom.

. . . {0 0 .
(b) Consider the matrix element V, = W:VV‘(,. " d’r. For W(.. " we take the ground-state wave function of the

hydrogen atom:

1 (—r) ( 5 ]
0) _ - _n
v, = T exp | - = (10.16.6)

For y, we take approximately

|
v, = exp{ik ) (10.16.7)
~8m3

where v = hk*/4nm. Note that \;f,?) is normalized to unity and v, is normalized to 8 (v — v'). Substituting
all this into V,, we obtain

11
V,, = ’2" jexp(_zk r-- )E“~r d’r (10.16.8)
na

To calculate the integral, we use the spherical coordinates (r, 6, ¢) . We assume that k is directed along the

polar axis, and we denote the angle between k and E;, by x. The scalar product E; - r is
¥ .p - F rlecocy on cQ-&- cln‘v clne cos (h—eh V1 /[Q.jé.m
iy e s LWV A MUS A MUY V()IJ ! -’
where ¢, is the corresponding coordinate of E,. Substituting (/0./6.9) into (/0.16.8) (denoting z = cos8) we

obtain

— | U’” ( k ] d} By S0k l(msk 10.16.10
, = = cos) exp| —tkrz—= |r’drlzdz = (10.16.10)
nd (2a)° LY “ na (2a) (1 +k*a

Let us now turn to dv:

3 2. 4%
ik = & dkdQ), =k dE, dS), dE ﬁ2 dQ, dE, (10.16.11)
where we have used the relation £, = = A%k*/2m {d2, is an elernent of the solid angle with axis along k). Sub-
stituting (£/0.16.1/3) and (10.16. 14) into (10 16.1), we obtain
|E |6 cos’x
dP,, = — ¢ X8(E, —E —fzw)a’deEv (10.16.12)
(1+ ka?)

The probability of ionization when the electron makes a transition with a final wave vector k within the element
d<Q, is obtained by integrating (/0./6.12) over dE, . Using the properties of 8-function in (/0./6.12), we have
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(0}

to consider only the point where £, = E_ "~ + fiw; thus it follows that

2ZmE,  2m(w-

min)

2
ke = FER 7 (10.16.13}
and 1+ 4%a? = —> We now have
min 3 6
640‘(mmin) ()] 372 2
dP, = T3\ o o ') E,cos™x dQ, (10.16.14)

[The probability is denoted now by dP, since (10./6./4) depends only on .] We use the fact that cos® X =
1/3, and integrate (/0.16.14) over the angles. We finally obtain the total probability of the atom jonization per

unit time:
256a3(wmm)" © P2
P = ENANTS (OTO—I) E, (10.16.15)

10.17. Consider a quantum system with two stationary eigenstates |1} and |2). The difference between their

eigenvalues is given by £, — E| = fi;,. Attime s = 0, when the system is in state |13, a small pertur-
bation that does not change in time and equals H' is applied. The following matrix elements are given:
(1}1H|1) = 0 QIH|1) = fiwy, QH'|2) = -hw (10.17.1)

(@) Using the first-order time-dependent perturbation theory, calculate the probability of finding the sys-
tem at time / in the state |1), and the probability of finding it in the state [2). (b) Solve exactly the
Schridinger equation and find | y(#) ). (¢) What is the probability that at time ¢ the system is in state [2)?
When is the approximation used in part (a) a correct one? At what time (for the first order) will the sys-
tem be with probability 1 in state [2)?

(¢) From first-order time-dependent perturbation theory we have P, , », andsince there are only two eigenstates
for the system, we obtain

Piysm = 1-PyLp (10.17.2)

2

!
J‘ MW, (1) dt’

0

1 )
Using the formula P‘(f') = P we arrive at

! 2 r 2
1 ftg, 1 1 2 2 Wy, 2 iw,,r 2
~ — , 92 ' () I U PLE - L. 1’ _
Py = Py e WQIH') dt ﬁzfl wy|| e ¥ dr o, o, 1)
0 0
‘ : 2 . 2
o afptun?? (e”“zx'/z _ e"“’n”) 2] 0”220 sin (w,,t/2)
= 0 ~ - ¥ .
0, 10,
_ (D(Z)i eim“r/2iZISi’i (ﬁ)z,r/;‘) |2 _ m(z]‘sm ((1}211/2} |2 ([0[73)
w,, /2 w, /2

Since @y 1«1, P o= m(z)tz« 1 and thus w, f « 1. The two inequalities ®,,7« 1 and w,r« 1 are the con-
ditions for applicability of the first-order approximation. Consequently, P, ,,, = 1 =P, =1,

(b) Method 1: By diagonalization of the Hamiltonian H = H, + H'. First, we express the Hamiltonian explicitly
in the basis of the eigenstates |1} and |2):

. [ £, Ao, ] ( E, ﬁmuJ 0174
= = 10.17.
hw, E,-fo, ho, E, ( ‘

where we used the relation E, - E, = fiw,. The eigenvalue equation is Hv = Av, then (E, - A - (i"moﬂ)2 =
Oand A, , = E| + Aw,. For two eigenvectors v, and v, we obtain
1 {1 1 11 1
o= ) = E“DHZ)) n= )= E(m_]z)) (10.17.5)
So, for the state | y(7)y we have

—i lll/

lw(n)) = ae ﬁ|vl)+a2 e_'xz'lvz) (10.17.6)



CHAP. 10} SOLUTION METHODS IN QUANTUM MECHANICS—PART A 195

Using the initial condition |y(¢t = 0) ) = |I) wegeta, = a, = l/ﬁ , so eventually

1 ~(E, +ho )1 + i, “ = hay)t
W)Y = 3 (™ E R e, apumy 1) 43 (67 B RE o= Regh ) oy
= "B [ cos (wgr) |1) — sin (0gr) 12)] (10.17.7)

Method 2: Explicit solution of the Schridinger equation, We write | y(#) ) in the form
ly(n)) = Ci(e

45':/5'1)_*_ G, (1) efigz’/hlz) (10.17.8)

(D))
ot

Substituting this into the Schridinger equation i# = (Hy+ H)|y(2)) we obtain

1 E /R

. , iE L E
it ¢ e ® e e e i i e e iy

~E t/h 1Bt/ h

= (Hy+H) [C (e [2)] (10.17.9)

Multiplying (10.17.9) by (1| we get

H+C,(He

, _ iE ‘
iﬁ[C (1) e A T‘Cl(t) e"El”*] = C (0 e B CQUHG ) + QDY) + o0 e 527 ((1|Hy|2) + (1]H|2))

—1Et/h IEL,l/ﬁ

=E C/(1)e +C, (1) hwge (10.17.10)
which leads to
iLC (1) = 72" Cy(n) b, (10.17.11)
1
where @,, = 3 (E, - E)). In the same way, multiplying (10.17.9) on the left by {2| we arrive at
ihCa (W) = C(n €', - C, (1) ho, (10.17.12)
Equations (/0.17.11) and (/0.17.12) give a system of differential equations with coefficients C,(¢) and
C,(1):
AC (1) = e70'C, (1) hw,
) (10.17.13)
iKC,(t) = C() €', - C, (N,
i .
Extracting C,(¥) from the first equation, Cy(#) = _=C (¥ ¢'®2', and differentiating:
o
i (@, ¢
Ca(t) = [ c (e + i©,,C (1) e (10.17.14)
Substituting these two expressions into the second equation in (/0.17.13) we get
C. (N +wCy(1) =0 (10.17.15)
Using the initial condition C, (r =0) = 0, ([0.17.15) gives C,(¢) = cos (®,¢). Thus, we can calculate the
coefficient C,(7) and find C, (1) = —i sin(wgyt) e'“2’, so eventually,
(1)) = e E"* [cos (wyr) [1) =i sin (041) |2)] (10.17.16)
Note that the results of the two methods coincide.
{c) The probability of finding the system in state |2} is given by
Py Lp = 121 w(D) ) = sin? (o ot) (10.17.17)
The approximation used in part (a) is thus correct when @, = 1. The system will be in state [2) when 7 = 0
n L k
or w,7 = % 5+ nk, ke N. Attimes T = * TR I , ke N, the system will be in state |2).
o @
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Supplementary Problems

Repeat Problem 10.3, using the raising and upper operators, a and «', respectively.

Consider a one-dimensional oscillator with a linear perturbation Ax. For the ground state energy, compute the first
two orders of the perturbation (use dimensionless units). Ans. EA) = 1 - A2/4.

A small perturbation, W = ax*, is applied to a harmonic oscillator with force constant & and reduced mass 7. Com-
pute the first-order correction to the eigenenergies and first nonvanishing correction to the wave functions.

1 3a
W

Ans. ¢l0)

Consider the Hamlltoman H = Hy+V(x,y), where H, = mw’ (,\ +y )/2 is the free Hamiltonian, where
Vix,y) = lm(o xy is a perturbation. (a) Find the exact ground state. (b) Using the second-order perturbation, cal-
culate the ground state energy.

178 (mw(Jl K+J1+K)x]
exp

4%

Ans. (@ Wy ) = [ (1-2)

( mw(n/1—1+A/1+x)v) (mﬁ)(afl—?»—,,/l+l)xy)
xex a% exp 7% :
2 1 2
(b) Em = —}—éﬁi),wheretheexactresultis E, = Eﬁm(n/l —A+J1+ A sﬁm—l g’m+---

A particle with mass m and electric charge ¢ moves in a one-dimensional harmonic potential, subjected to a weak
electric field €. (a) Calculate the corrections to the energy levels and to the eigenstates of the first nonvanishing

Uful:[ (U) LdlLuldlC ll'lC ClCLlI 1C U]pUIC moinent ()l ine pdrm.n: k() Solve pdflb (u) anda [D) CXdC[ly' dl'lﬂ compdrc lnC

results to the approximate solutions.

: 2 1
T T R A T X R T

5
nmo

Ans. (a) AE = -

A plane rotator with electric dipole moment d and an inertia moment / is subject to a uniform electric field E that
lies in the plane of rotation. Calculate the first nonvanishing corrections to the energy levels of the rotator. Consider

the field E as a small perturbation. Hint: The perturbation is W = —-d - E.
Ans. E, = E,EO) +E,§2) = ﬁ;]z fﬁl{%
Consider the Hamiltonian
H = ;;1 Zp;+ém% (X2 4530 + Vi (3, = %,) (10.24.1)
where V_ (x -x;) = lm(ul (x, - ). (@) Find the exact energy of this system. (b) Assuming that W =

V. (X, — X,) , use the second-order perturbation to compute the energy of the ground state.
Ans. (@) Ey, = (N+1/2)hog+ (n+1/2) A Jos + 07 (N, n=0,1, ...), where
2 4 A 4
) ® o )
Eo = ;fimn&;ﬁm§+u25ﬁg.+§—l—i—} ' (B E. = hoy, E-—I—i—l.
VA Y 2N i U 4(1)0 lb(ﬂé A\ U 0 4(1)0 lb(ﬂ(})

In the first approximation, compute the energy of the ground state of a two-electron atom or ion having a nuclear
charge Z. Considering the interaction between the electrons as a small perturbation.

me*

5
Ans. E=E™ +EY = -(zz-—z) T

8
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10.26.

10.27.

Consider a quantum system that has an orthonormal basis of three unperturbed states. The perturbed Hamiltonian
is represented by the matrix:
(E 0 a W

H=|0 E b (10.26.1)
a* p* E,

where E, > E,. Use a second-order nondegenerate perturbation to find the perturbed eigenvalues. Diagonalize the
matrix and find the exact eigenvalues, Repeat using a second-order degenerate perturbation. Explain the inconsis-
tencies arising from the different approaches.

1 0 0
Ans. Denote {1} = 0], 2) = l , and |3) = 0 . Using a nondegenerate perturbation, AE" = 0, so
0 1
2 2 2 2
a b ; +|b
AEY = .;t I.; ap® o O g lal el (10.26.2)
1R [_,2-—1_,] =/ cz_ul (B4 Ez_ul
The exact solution is
lal” + b/’ lal” + bl
AE, =0 AEl2> = ﬁ AEH) = —ﬁr (10.26.3)
U H d b 3 E — 0 . E — M
sing a degenerate perturbation, A =03 A n= Ez*En .

Consider a molecule consisting of three atoms arranged on a line; see Fig. 10-6,

(3) (1 (2)

O—O—0

Fig. 10-6

If an electron is in the vicinity of atom A, its energy is E; if it is in the vicinity of either of the atoms B, its energy
is £, (E, < E,). (a) To the first approximation, assume that there is no transition of an electron between atoms.
Find the Hamiltonian /. (b) A small perturbation is applied and the electron can move from one atom to another.
The energy associated with a transition is a, where a « E . To the first order, compute the corrections to the energies
and eigenstates (for E| apply to the second order). (¢) Suppose thatat + = 0 the electron is near atom B. Using the
approximation of part (b), calculate the probability that at ¢ > 0 the electron will be in vicinity of atom A. (d) Find
the exact eigenenergies of the electron. (¢) An electron can now move from an atom B to another atom B, and the
energy associated with the transition is b, where b « a. Using perturbation theory, find the energies and eigenstates
of H when the unperturbed Hamiltonian is H, + W, where W is the perturbation introduced in part (b).

B 0aa 2w 20
a
Ans. (@ Hy=|0 E 0\ ) W=1a00k £ =£"+WD+2g—5— = £” + p—p;
0 o & a0o0 T 27 ™
1
a

2|Wit R1NLZD -
) = 1) - }!_23&)—}}_’5313) = - @+ B orly) = | E2=F1 | The states lys) and y)

a
E,-E,
are degenerate; therefore, to the first order there are no corrections to the eigenstates. (¢) P, ,;,, = 0. (@ E| =

1 N L
E, = 5(55"’+E;°)¢J(Ef°’-E§°))2 -84), E,=E" (&) Ey=E,~b, E =E =5(E+E+bt

JE - E, =) -24%).
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10.28.

10.29.

SOLUTION METHODS IN QUANTUM MECHANICS—PART A [CHAP. 10

In the first approximation, compute the shift in the energy level of the ground state of a hydrogen-like atom resulting
from the fact that the nucleus is not a charge point. Regard the nucteus as a sphere of radius R throughout the volume
of which the charge Ze is distributed evenly. Hint: The potential energy of an electron is the field of a nucleus that
has an evenly distributed charge,

Zé[3 17
= §—"r—2 for 0<r<R
R{2 Zp
V() = , {10.28.1)
¥/
—Té for rzR
4( R Y2
(0 () _ 212
Ans. E,=E, +E, =E, [1—5(00)].
Consider a harmonic oscillator described by
H = =p+ smad(n) 10.29.1
=2omPrt 2 X (10.25.1)

where (1) = w,+ cos (ar) 8® and 3w « ®, (a is a constant). Assume that at 7 = 0 the system is in the ground
state, Using perturbation theory, find the transition probability from the ground state to a final state f. You may use

the result (n(x2|0) = mﬁm/ﬁ for n = 2 and zero otherwise.

(8(1))2 sin (mf, —a)t/2
Ans. Py (0= S0 [ (0,—a) /2 (ﬁaa.2m0+sa,()) :




Chapter 11

Solution Methods in Quantum Mechanics—Part B

11.1 THE VARIATIONAL METHOD

The perturbation theory studied in Chapter 10 is not the only approximation method in quantum mechanics.
In this section we present another method applicable to conservative system. Consider a physical system with
time-independent Hamiltonian H. We assume for simplicity that the entire spectrum of H is discrete and
nondegenerate:

(HI9,) =E,16,) n=1273... (11.1)

We denote by E, the smallest eigenvalue of H (that is, the smallest energy of the system). An arbitrary state

ur\ can ha writian in tha form
11 U YVILILLCILL 111 v 1ullill

ly> can

) = Zc',,MJ,,) (11.2)
Then
ClHY) = D e E, 2B D Je)] (113)
On the other hand,
wiw = D lef (114)
Thus we can conclude that for every ket,
(H) = % > E, (11.5)

Equation ({1.5) is the basis of the variational merhod. A family of kets |y () ) is chosen, called trial kets. The
mean value of H in the states |y (o)) is calculated, and the expression ( H) (o) is minimized with respect to
the parameter o . The minimal value obtained is an approximation of the ground state energy E,.

Equation (/7.5) is actually a part of a more general result called the Rirz theorem: The mean value of the
Hamiltonian H is stationary in the neighborhood of its discrete eigenvalues (see Problem 11.1).

The variational method can therefore be generalized and provide estimations for other energy levels besides
the ground state. If the function ( H) () obtained from the trial kets |y (0)) has several extrema, they give

approximate values of some of its energies £ .

11.2 SEMICLASSICAL APPROXIMATION (THE WKB APPROXIMATION)

Apart from the perturbation and variational methods described earlier, there is another method, which is
suitable for obtaining solutions to the one-dimensional Schrodinger equation. This is the so-called semiclassi-
cal, or WKB approximation (named after Wentzel, Kramers, and Brillonin). The WKB method can also be
applied to three-dimensional problems, if the potential is spherically symmetric and a radial differential equa-
tion can be separated.

The WKB method introduces an expansion in powers of # in which terms of order than A° are neglected.

Thus, one replaces the Schrodinger equation by its classical limit (f — 0). However, the method can be

199
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applied even in regions in which the classical interpretation is meaningless (regions inaccessible to classical
particles).
Consider the Schrédinger equation in one dimension:

d2‘|’ 2m ,
—+ 2 [E-V)]y(x) =0 (11.6)
dx f

We consider only stationary states, and write the wave function in the form y(x) = ¢
abbreviations

fu(x)

. We shall use the

1
k(x) = ;l.\/2m [E- V()] for E>V(x)
— (11.7)
k(x)y = (D) = EA/Qm [V(x)-E] for E<V(x)
Substituting y(x) into (//. 7) one finds that u(x) satisfies the equation
L (24T 4 taeon? = 0 (118)
-T2+ [ko]” = .
dy’ Ndx
In the WKB approximation we expand u(x) in power series of #:
A h)2
u(x) = Up+ JU H\ T Uy (11.9)

and we consider only u,, and «, . We obtain then the approximate wave function according to the WKB method:

C, ‘ c,
yi(x) = ,—lk(x)lexp{iJr I'<(x’)dx’} + '_Ik(x)lexP{_iJr k(x) dx’} (11.10)

A region in which E > V(x) is called a classically allowed region of motion, while a region in which E < V(x)
is called classically inaccessible. The points in the boundary between these two kinds of regions are called
turning points [where E = V(x) |.

Applicability Condition: The WKB approximation is based on the condition

1, 2
Sk o] « Kol (11.11)

This condition can be expressed in a number of equivalent forms. Using the de Broglie wavelength A = Tn we
can write (1/.11) as

L Idk < I A 3 I Es B
b haiel BECOY ({1.12)
4n Idx
Adjacent to the turning points, for which k(x;) = 0, we have
dk
kzzr (x —x4) (11.13)

g

Thus the semiclassical approximation is applicable for a distance from the turning point satisfying the condition

[ = x| » ,%t (11.14)

The Connection Formulas: Consider a turning point. Assume that except in its immediate neighborhood
the WKB approximation is applicable. The matching between the WKB approximations on each side of the
turning points depends on whether the classical region is to the left of the point (Fig.11-1) or to the right of it
(Fig.11-2).
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Vix) Vix)

x=b X

Fig. 11-1 Fig. 11-2

S

In the first case we have, x > b:

A U ] 11.15
(x) = —Fcos k(XYdy-B,w (11.15)
Wi = peos| | ,

while in the second case, for x < a,
A2 ’ 11.16
W,o(x) = Fcos| | k(x)dx' - B,m (11.16)

Application to the Bound State: The WKB approximation can be applied to derive an equation for the
energies of a bound state. Using the connection formulas in each side of the potential well one obtains (see
Problem 11.13)

b
J.k(x) dx=(n+%)n n=0,12,... (11.17)

a

which may be written
1
§p(x) dx=2nﬁ[n+§) n=0,1,2,... (11.18)
This equation is called the Bohr-Sommerfeld quantization rule.

Barrier Potentiai: if one considers a potentiai barrier of the form V(x) between x = ¢ and x = g anda
particle with energy E, the transmission coefficient in the WKB approximation is given by

b
Tzexp[—%] L2m [Vi)—E) dx:| (11.19)

Solved Problems

it )
Wiy
tionary (that is, 8 (H) = 0), if and only if |y) is an eigenvector of H with eigenvalue (H).

11.1. We define (H) by (H) = , where |y) is any vector in the state space. Show that (H) is sta-
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11.2.
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We write the equation (H) = (y|H|y)/ (y|y) in the more convenient form, (w|y)(H) = {y|H|y). Differ-
entiating both sides gives

({Sw|w) + (y[BW)(H) + (w|y)8(H) = (dylH|y} + (y|H|dy) (11.1.1)
As {H) is a scalar value we may rewrite ({/./.1) as
(WIWBS(HY = (Syl(H - (H))|y) + (y|(H - (H))|y) (11.1.2)
Defining |¢6) = (H - {H))|y), we may reformulate (//./.2) in the simpler form,
(WIWB(H) = (By|o) + (0|3W) (11.13)

Equation (/{./.3) holds for any [8y), in particular. for [8y) = |¢)3A, where 8A is an infinitesimally small real
number. Substituting in (//./.3) we arrive at

(y| WS (H) = 281 (6]0) (11.14)

Now, if 3(H) = 0.then according 1o (/ /./.4) we must have |¢) = 0, so that H|w) = (H)|y), and we see that |y)
is an eigenvector of H with eigenvalue (H). On the other hand. it Hjy} = (H)|y), then according to (/7.1 .4) we
must have §(H) = 0, so that (H) is stationary.

Consider a one-dimensional harmonic oscillator:

Rd
H=- 2"’([.\—2 + 5 MO (11.2.1)

(a) For the one-parameter family of wave functions y (x) = ¢ -« (g >0), find a wave function that
minimizes (H). What is the value of (H)_...,? (b) For another one-parameter family of wave functions
W) = xe P (B >0), find a wave function that minimizes (/) and compute the value of (H) i ()
Repeat the same procedure for

W(x) =

A 3

S+

(y>0) (11.2.2)

(@) We begin by considering (H):

w0

* R d 1
W, (X) —Z_m‘? +3mwi |y (x) dx

oo #? |
(H) = — = gt gmu o (11.2.3)
_[ WG () W, (x) dx
We differentiate (/) with respect to o
d{H) h* .
do. = 2, &M o (11.2.4)
.. d{(H A1 L mwm ) )
From the condition (fla> = 0 we have o —gmm‘(—x—2 = 0 and o, = 5% thus o gives the mini-
o=, ()

mum value of (H) (as can be easily verified). The wave function that minimizes (H) is w%(x) = g-mori/2h

and
IR NS R
(H>mm - Zma() + 8!770.) Oy = 2ﬁu) (1]25)
Thus, (H),,, coincides with the energy of the # = 0 level of a one-dimensional harmonic oscillator. Note

that the family of functions we are studying coincides with the ground-state wave function of the harmonic
oscillator.

(/) We proceed with the same method as in part (a):

oo
-

*()[ e d?+1 ,,i} " d

Y (X)) | =5 -~ +5mw [ yu(x) dy R

B B Zmd_‘. 2 B ii 3m(021

= 2'71B+ ] B (1126)

(H) = -
J- \VE (x) \pu(,\') dx

-
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and

s o ——— 2 (11.2.7)

mow

1 3
We obtain B, = 57~ and yy (x) = xe MO oo () = 3h. Thus, (H)

n = 1 level of the one-dimensional harmonic oscillator. (Try to explain this result.)
(¢) Applying the procedure of parts (a) and (b), we obtain

) Rd o,
¥ (x) —fn;+§mmx Y, (x) dx

min min €quals the energy of the

_ A
(H) = = = Tyt 2m0’Y (112.8)
J Wy () Wy (x) dx
and
1 1 &
Y = B R o %= o (11.29)

is equal to /2 times the ground-state energy.

min

1
hence (H} . = ﬁiﬁm. We see that (H)

11.3. (a) Using the variational method, estimate the ground-state energy of an atom of hydrogen. Choose as
trial functions the spherically symmetrical functions — ¢ (» whose r-dependence is given by

C(I—i) forr<a
o

O (1) =
L0 forr>a

(11.3.1)

where C is a normalization constant and ¢ is the variational parameter. (b) Find the extremum value of
o.. Compare this value with the Bohr radius a;.

(a) First we compute the normalization constant. This gives C* = 15/m0?. The kinetic energy is given by
e 2
2nh’ 1 d7(rgy)
(Ek) = ~om ‘[ rz%(r)[; P dr (11.3.2}
0 r
Integration by parts gives

nﬁz(
(EA) = _7 rq)a(r) dr

(]

d(rq)a))a w2 [ rd :
+ [d—,(rtb,,(r))} dr (1133)
0

N il

But since (r¢ {r) i, 0" (rogr)) ir _, = 0, thefirst term vanishes and we have

ni?frd 2 st (. 2p. 15K 47 s#1
(Ey = - [—d-;(rq)u(r))] dr = 5 . I-)dr= —m—a‘lza—-2a+§a} = o (11.34)
0

The potential energy is

o

N 9 3 I5ke? |
r|¢a(r)|2dr= —30ke2‘[ (r——;-+é]dr=— 6e po (11.3.5)

(Vy = sz o VNG (r) dr = 2nke2J

0 0 0

Thus, the total energy as a function of « is given by
( AP0 kel )
(B@) = (E)+ (V) = 3| =T (1136)

(b) The extremum condition d{E)/do. = 0 leads to

241 1 432
7;0:53 = ikezoc(’)2 ==

P (11.3.7)

Note that the Bohr radius is a, = #°/kme?; thus, o, = 4a,.
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11.4. (a) Write the Schrédinger equation for the helium atom. What are the solutions for the ground state if
one neglects the interaction between the two electrons? (b} Assume that the electrons perform an electric
screening of each other and define Z as a variational parameter. Use the variation method and find (#)
and the screening charge.

(a) We begin by considering the Hamiltonian of the helium atom:
2 2
LI ) z(i l) [
H_2m+2m_ze r|+r‘2 -+.r12 (11.4.1)

where ri, = |r; - r,/. We transform the Hamiltonian to units in which ¢ = # = m = 1 In these units the
Schriddinger equation becomes
1

o2 10 ] 1
[—EVI-EVZ—Z(E+’T2)+"_L2:'W(rI’ ry) = Ey(ry, ry) (171.4.2)

If one neglects the term 2/ 7., (the interaction term), the solutions are obtained by separation of variables:

372 3,2 3
Z er,Z _2r, Z “2(r +r,)
! = —p [

WYolrs 1) = uy(rJuy(ry) = a12¢ gt =

(F1.4.3)

3/2 3/2
Note that the factors —3¢ " and —73¢7™ are the ground-state functions of a hydrogen-like atom.
n n

(b) In the presence of another electron, each of the electrons is influenced by a decreased charge from the nucleus.
We define Z; = Z— 0, where ¢ is the screening charge. We choose the trial function to be
3

(Z-9)

Yo lrpry) =~ exp[~(Z-0)(r +r)] (11.4.4)
Since
_ : 8 o 1
Hy, = |- @-07 =2=C+ v, (114.5)
then

z-oy [ o Z-0)° [ [e2@ o0+
= —(Z-0)- 2%"- ;4nr2e'<2-°>’ dr+ L = ) J.J - dr, d’ry,  (114.6)
0

or

2(2—0’)3 no (Z_G)GJ.JeZ(Z—G) (rl...,z)

- — 2_
(H) = = (Z-0) - =5

. d’, d, (11.4.7)
12

We solve the last integral using the expansion of I/r,, by Legendre polynomials (see the Mathematical
Appendix):

: > (rl)n
r m P (cos8) 0<r <r,
1 n=20

Fiz -

1 (”_z) _ _
n rl P (cos8) FaSry<eo

n=10

The onty terms that contribute to the integral are the ones with n = 0 (since the exponent that enters the inte-
gral depends only on the values of r; and r,, and noton the angle 8); thus,
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11.5.

€«2(Z—U)(rl +ry) 1 5] e
-2(Z- -2{2- — -
E— d3r1 d3r'2 = e 92 4n| - rfe (2-a, dr1 + re 2(Z-0)r dr] d*
Fya T 2
r

4 2

2

5n
= ———— (11.4.9)
8(Z-o)’
Thus, the expression for {(H) is
5
(H)=—(Z~G)2—2(Z—G)c+§(2~c) (11.4.10)
d{H) , 5 27

Using the condition = 0 wefind 6, = ]6,a.nd then Z , = i€

dc

Consider a one-dimensional attraction potential V(x) such that V(x) < 0 for all x. Using the variational
principle show that such a potential has at least one bound state.

For a particle moving in this potential we may choose the following trial wave function:

2a 5
y = «/'%exp (—ax”) (11.5.1)

Note that the function is normalized to unity. Thus, for the ground-state energy we have

T ad?
E, < y Zmd +V(x) W dx (11.5.2)

—oe

Since V(x) < () for all x, it remains to prove that £, < 0. Substituting the trial function, we find

o8

< 24 2 ﬁzd- \ dx
EO_J;J exp (—ax )L 2m +V(x)Jexp(—ax)

[J exp(—ar)[ ](exp(—ar)) + V(x) exp (- Zax)}dx

J'J [l —2ax?]exp(-2ax®) + V(x) exp (-2ax )}dz

afz2 aﬁ2
= 2ax’ exp (—2ax?) dx + V(x)exp( 2ad ) dx (11.5.3)

, -
h= %+ ﬁ:z_[ V(x) exp (-2ax?) dx (1154)

2
Thus, since the integral EJ 2axzexp (~2ax?)dx has a positive value, E,<E;. Consider now the minimum
value of E

oF;
ao ’2a J V(x) exp (~ ~2ax%) dx - J_J 2x°V(x) exp (-2ax*)dx = 0 (11.5.5)

Combining (/7.5.4) and (/1.5.5) we obtain

(EQ) min = A/%J exp (—2ax?) (1 +4ax®) V(x) dx (11.5.6)
since exp (—2ax*) and (1 + 4ax?) are positive functions and V(x) is a negative function for all x, (E'y) ., < 0, and

sois E,.



206 SOLUTION METHODS IN QUANTUM MECHANICS—PART B [CHAP. 11

11.6. Consider a particle in a one-dimensional potential V(x) = Ax* Using the variational method, fgnd an

h
approximate value for the energy of the ground state. Compare it to the exact value £, = 1.062—mkl/3

»
where k = 2m)\/%%. Choose as a trial function W = (Qa/m) e

w1l h- h It ALY

First, note that the trial function W(x) = (2a/n)'"* ¢ is normalized to unity; that is, J |l|1|2dx = 1. The
2
td -
Hamiltonian is H = — Z_m_ + Ax*; thus

B £ &
J V() [-ﬁ;;z + M“]w.r) d

—es

(H) = (11.6.1)

J' yH () y(x) dx

The denominator equals one as [y(x) is normalized]; thus,

y , o b ;o
2_(1,)]/4 »a_‘z( ﬁlJ d‘(z_aJl/-‘ _oat (2_(1)/4 o ‘4(2_‘1)]/4 —oa?
J (n ¢\ TImlga\w ) oe T e n)o e ) et
# pal L. 2o
A 2__(1‘[ o 20T Ta [2(1'(2 _ le\‘ + A _(1'[ €ﬂ2u.r1x4 dy
my n
ﬁz - ﬁz B » ~ A 2
= —5- /%?4(12-[ e 20T gy 4 o (2?(-12(1‘[ e dy + A ’2_;_11 e 2™ xt dx (11.6.2)

The first integral is
2
{ A Pa e fifo
—201\2 2 - == P it
hh= 2m J dx = -5, n 407g 200 0 2m (11.6.3)
The second integral is
A’ Ra ) o 2 o In o
=5 ?ZOLJ e dx = Imn 7 2a 0" m (11.6.4)
and the third integral is

2a 20
1=\ /—J- dx = A / 1165
’ nJ o dx 4(2a) 20 16a2 ( )

Substituting these integrals we obtain

(H)

(H) = 2m m 1602 2m*t 1642 (11.6.6)
d(Hy h' 3 k d{H) ~ R 3N _(3mk)m
Hence, do. = Im 8g . Since do | =0, we obtain 2”’_8(13_0 = 0= | 3 . In terms of
(}
k = 2mAh/A° wehave a, = (3/8)" k', Substituting this value to (1/.6.6), we obtain
3, h? sl
(H)um = ‘3'”2,,,’&'”3 = 1-082519/3 (11.6.7)

Comparing the last result to the exact value of £, we see that we have quite a good approximation. The error is
approximately 2 percent.

11.7. Consider a particle moving in an arbitrary potential. Assuming that the potential V(r) satisfies the
semiclassical condition, estimate the number of discrete energy levels that the particle can occupy.
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11.8.

11.9.

The number of states that belong to a volume V in the phase space and correspond to a momentum in the range

4 dVv
0<p<p.. and to particle coordinates in the volume 4V equals r,,np’:m*("m‘ For fixed r, the particle may
3 nhY

assume a momenturn that satisfies the condition E = p2/2m+V(l‘)SO. Thus, the maximal momentum is
Prax = A-2mV(r). Substituting p_,,, we obtain the number of states in volume dV:

4
dN = 3m [-2mV(r))*?

11.7.1
(2nﬁ)3 ( )
So the total number of states of the discrete spectrum is
ﬁma/z"' vs
N= -Vir dr 11.7.2
PEPE [-Vi(n)] { )

The integration is carried over the region of space where V(r) < 0. Note that the integral diverges if V(I') decreases
as ", where n < 2.

(a) Find the condition for applicability of the WKB approximation to the case of the attracting Coulomb
potential. (b) What are the implications of this condition for the Bohr model of the hydrogen atom?

(a) We may write the applicability condition in the form

hdp
dx| » | (11.8.1)
2p
Omitting the factor 1/2, we obtain
% j—i «l (11.8.2)
p
Note that
dp 4 gy M4V mF
Zr = dx 2m(E-V) = “pdx = 7 (11.8.3)
. dvix) . . . ] . ) ..
where F = — dx is the classical force. Substituting (//.8.3) into (//.8.2), we obtain the following condition:
h|F
’"____l L1 (11.8.4)
P
For the attracting Coulomb field F = —./r?, so we can roughly estimate the momentum by writing
o
p~ IVl ~ 72 (11.85)
A 2 B2
Thus (//.8.4) becomes mh (0/7) = il « 1 and finally,
M3 g3 2,30 m' 2 ?
ﬁ2
re s (11.8.6)

(b) The Bohr radius of a hydrogen atom is given by ay . = f’/ma.; thus condition (//.8.6) becomes r » agy,.
For the Bohr model we know that the nth-level distance of an electron from a proton is given by r, = n’ag,,..
and so the WKB approximation is applicable for the levels n » 1.

Using the WKB approximation find the bounded states for a one-dimensional infinite potential well.
Compare your results with the exact solution,

Suppose that the boundaries of the potential well are at x = +a. Atthe boundaries the wave function has value
zero. From Eqs. (//.15) and ({/1.16) we have

b

cos (-B,m) 1101
(11.9.1)

cos (-B,m)
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11.10.

11.11.
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and therefore B, = B, = 1/2. Thus we get, according to (//.1]),

J' k,(xXYdx' = 2ak, = (n+ L)in (11.92)
—a
We get
1Rk, 2R (n+1)?
E, =5 = — (11.9.3)
252 2
Recall that the exact result is £, = s 2 .
8ma
Use a WKB approximation to obtain the energy levels of a linear harmonic oscillator.
Consider the Bohr-Sommerfeld quantization rule:
h
Jr pxyds = An(n+1/2) (n=0,1,2,..) (11.10.1)

where p(x) = J2m[E - V(x)] is the momentum of the oscillator, E its energy, and V(x) its potential energy. Since
1]

§ pdx = 2‘[ p dx holds for a linear harmonic oscillator, we may write the Bohr—Sommerfeld quantization rule
a

1
in the form of (//./0.1). For the harmonic oscillator we have V = Em(ozxz. The points 2 and b are the turning points

1
that are determined by the condition p(e@) = p(b) = Oor E-V = 0; thus, E - Qmmzﬁc2 = 0. So, we have

[2E b [2E (11.10.2)
a = == = == 10.
«/m(z)2 '\jmm2

/ o? )
We introduce the new variable z = x ”;_E and obtain

b |

2E nE

_ = 2, _ L=

Jp(x) dx = mj l—z2¢dz = ® (11.10.3)
1

a -

Comparing this result to (//.10.1) we obtain

E, = ﬁm(n+%) (11.10.4)

Thus, in the case of the semiclassical approximation the result is identical to the exact one.

Using the semiclassical approximation, calculate the transmission coefficient of a potential barrier
2
X
VO(I__Z) asx=a 111
V(x) = a (11.11.1)
0 otherwise

See Fig. 11-3.

Let E be the energy of the particle and m its mass. The transmission coefficienl in the semiclassical approxima-
tion is given by

2 [
Tzexp{—ﬁ‘[ ,,/Zm[V(x)—E]d.x} (11.11.2)

where x, and x, are the turning points computed using the condition V(x) = E. Hence.

f E f E
X =-a I_V X, = +a l—v (11.11.3)
0 0



CHAP. 11] SOLUTION METHODS IN QUANTUM MECHANICS—PART B 209

Vix)

Vo

Fig. 11-3

Thus, (/1.11.2) becomes
o [ratt-tEv1 ' ;
T=exp|-3 JZm{VD(I—j)—E}dx (11.11.4)
—all- (Eovgy' " a

Computing the integral gives
2ma(Vo— E) (11.11.5)
T=exp [—It V_o 3

Note that the expression of T is valid if the exponent in (//.11.5) is large; that is,

a(V,-F)
n /2‘/—”’——-‘;— » 1 (11.11.6)
0

Tha lmit = N porreg
1 3w ARLINAR U0 ALV 4 V) ]

Adc
that the wave function can be written in the form y(r, 1) = ¢'5%"% and that the system is in a stationa
i y ry

state, i.e., we can write S(r, 1) = &(r) - Et. Derive the following conditions for the applicability of the

semiclassical approximation: (a) (VG) 2 s ﬁ|V20| and p2 » £|V - pl; (b) in a particular case of one-

dimensional motion, A » 2;‘ d;" , where A is the wavelength according to the De Broglie relation
T dx
A= h/p.(c) p*» mi|@Y].
dx

(@) We begin by substituting the wave function W(r, 1) = €“* into the Schridinger equation:
A’ 3
3=V V)Y = iR (11.12.1)
Hence,

Livs.vs)- Ly == 11.12.2

2"1( . )_Zm +Wr) = T ar (11.12.2)

Using the assumption that the systemn is in a stationary state, we substitute S(r, f) = &(r) - Et, and arrive at
1 , ih_, .

ﬁ(Vo) —ﬂV c+Wr) = E (11.12.3)

To achieve the wransition from quantum mechanics to classical mechanics we must take the limit £ — 0; then,
the term —%Vzc in (/7.12.3) can be neglected, and we obtain

ﬁ(Vc)2 +Vr) = E (11.12.4)

This can be considered as an equation of classical mechanics, provided that Vo, = p. However, the essence
of the semiclassical approach is to arrive at equations that lead to the classical mechanics ones, even for
purely quantum systems where the transition i — 0 is not justified at all. Looking again at ({//.12.3) we note
that the transition from (/7.72.3) to ({1.12.4) can be achieved not only by taking the limit £ —» 0, but also by
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assuming that
(Vop)' » iV, (11.12.5)

Therefore, (/1.12.5) is a condition for the applicability of the semiclassical approximation. Equation ({/.72.5)
can be rewritten as (p = Vo ):

p’» 4|V - pl (11.12.6)
. . . dp .
(6) In the case of one-dimensional motion, V- p = Z; using (/7.12.6) we have
ft
| » Mldp/dx (11.12.7)
P

Differentiating the De Broglie relation A = h/p with respect to x, we obtain
dh

d\ - |hdp| = |2rh dp (11.12.8)
dx p° dxl p*dx
Then, according to (/1.12.7), we have 2_4':_1_ « 1, from which it follows that
ndx
A» | Adh (11.12.9)
2m dx

The condition ({/./2.9) can be intcrpreted as follows: Along the distance of A/27 the change in the wave-
length must be much less than the wavelength itself.
(¢) From classical mechanics we know that p = ./2m (E - V). Thus,

dp dpdV m dv mdV

(11.12.10)

dx _ dVdx T 7 /2m(E_v)?d_x = Tpdx
so |4P| = = avi Substituting in (//./2.7) we obtain
dx|  Pldx
p*»mh|dY (11.12.11)
dx

11.13. Using the WKB approximation, derive the Bohr—Sommerfeld quantization rule.

Consider a one-dimensional case where F > [V(x)] (see Fig. 11-4).

min

FG" anv valne nf F there are anlv twao turmmme nointe Vi = Vihy = F The occillatine ecolntion hetween two tnrn-
or any vaiug of £ 1Xre are only iwo iuming points ¥a) 1523 L. 10e osClhialing sonulion deiween (wo urn
ing points is
X
£ M Al 1
Y. = J—S|n k(x'y dx' + P (11.13.1)
P a

where C and [} are constants. In small vicinities x, <a <x,, x, < b <x,; the WKB approximation is not applicable
where the wave functions in these vicinities are given by
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A u
2mexp{—1\x(A ) dx} at x,

) = (11.13.2)
—=sin X'y dy' at x,
Jp . :
and
exp x Xy dv' at x,
ﬁ 2./lp] (11.13.3)
V()
B . n
—=sin k(x) dx +3 at x,
Jp .
where k(x) = 542,*1 LE-V{x)jand x(x) = Evz,w [V(x) - E] . We require a smooth transition from the oscillating
solution to the solutions in the vicinities of a and # and so the following conditions must be satisfied:

1 B=(D"'C II Jk(x')dx' = :rl:n-v-%t where n = 0,1,2,... (11.13.4)

b

Recall that p = #ik and introduces the loop integral

b
§p(x) dx = 2‘[ plxy dx (11.13.5)

@

This integral can be interpreted as integrating along the line from a to » and then back from b to a. Thus, substituting
in (11.13.41I), we arrive at

[&p(x)dx:Znﬁ(n+%)J n=0.12,... (11.13.6)

which is the Bohr—Sommerfeld quantization rule.

11.14. Use the semiclassical approximation in order to find the radial part of the wave function for a particle
moving in a central potential field.

From the theory of a particle in a central potential, we know that the radial part of the corresponding wave func-
tion can be written in the form R(+) = u(r)/r, where u(r) satisfies the following equation;

duftr)  [2m 0y LA CA.0 B P (11.14.1)
5 -V(r)) - 5 Yy = 14,
dr Lfl' < _J
We will write u(r) in the form
S "
u(ry = C(r)exp [z(%)] (11.14.2)
where C(r) and S(r) are real functions. Substituting (/7.714.2) into (/1.14.1) we obtain
4*C(r) (S)J 1dCr)dS(r) (é‘) dC(r) (é‘](idS(r))
42 CXP[ AR dr dr PRI Tar PR AR dr
iSY idseryye . (iSY id'sw))
+Cexpl T N, ) FEW eip\g)kg dr? J
2 i§
+ [ﬁ—Z'(E—V(r)) G )]C(r) exp( h) =0 (11.14.3)
re

Setting the real and imaginary parts of the left-hand side of (/1./4.3) to zero we arrive at

dC(rydS(r) d*8(r)
2 dr dr ¥ () dr

=0 (11.14.4)
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11.15.

11.16.

11.17.

11.18.

11.19.
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and

( dS(r-))2 B2 dPCr)

A1+ 1)
dr _C(i") dr? .

=2m[E-Vr)] - 2 (11.14.5)

dS(r)y 12 ,
Integrating (//./4.4), we obtain C(r) = (const.) X (*:19) . Since A is assumed to be a small quantity, we

can solve (/1.14.5) approximately. For small values of r, when the dominant term on the right-hand side of (/1.74.5)

CRAIUE ds(ry I+ 1)
s—,wehav = r

i e
P2 dr

with C(r) ~ Jr, and we arrive at the approximation

A dCy B

Cry g4 402 (11.14.6)
We now substitute (//./4.6) into (/.14 .5) and thereby attain a better approximation:
A1+ 1/2)°
S(ry = JJZm [E-V(n)] - #dr (11.14.7)
o
and
Ciry = const. (11.14.8)

A1+ 1/2)?

}

4\/2m |E-V(n] -

Substituting (//./4.7yand (/1.14.8)to (/1.14.2) we obtain u(r), and then R(r) = u(r)/r.

Using the trial function W = Nexp (—0t7*), compute a variational upper limit for the ground state of a hydrogen
atom and compare with the ¢xact value. Ans. {(H)=-11.5 eV. The exact value is —13.6 €V.

Using the variational method compute the energy of the ground state of a hydrogen atom. Use the following trial

2 )-! .
. r / - . .
functions: (@) y, = A,e™/%, (b) y, = Az[ b+ ;J and (¢) y, = Am—()e""/"(', where a, is the Bohr radius.
0
Compare your results with the exact result and discuss the causes for the differences. Hint; Compare the behavior

of vy, i, and ; with the true wave function,

2 T
Ans. (@b = |,(H) =-o— = E,. (0)b =7, (H = —08IE,. (¢)b =
A) mii z,an fad q Al i i

where E, is the energy of the ground state of a hydrogen atom.

[\= N RS}

(H),. = -075E,,

min

Using variational calculus, give an estimate for the binding energy of the deuteron. Assume that the potential
between a proton and a neutron is V(r) = Ae” """, and use as a trial function w(ry = Ce™, where A and C are nor-
malization constants and r,, is a characteristic length of the potential. Ans. E = -2.1 MeV.

Show that for motion in a central field, the condition for applicability of the WKB approximation is / » 1, where /
is an angular momentum quantum number. Explain why the term “semiclassical approximation” is justified in this
case.

Ans.  Since an angular momentumn equals L = /fi, we obtain relatively large values of an angular momentum, so
L is “almost classical.”

2

Consider the Hamiltonian of a nonharmonic oscillator # = — — +x° + x*. Use the WKB approximation to find
X
1 <
the ground state for x — oo, Ans. -~ L EXPp i§ as |x] — oo,
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11.20. Use the WKB approximation to compute the transmission coefficient of an electron going through the potential bar-
rier depicted in Fig.11-5.

|
[vﬁ -k <2V
Vix) = (11.20.1)
0 otherwise
5 v+ EY/k 1
Ans. T = exp ~£J JZm(V(,—ikxz—E)dx .
-2 V+E) sk
Vi(x)
‘L
Fig. 11-§
11.21. Use the WKB approximation to find the transmission coefficient for the potential
I 0 x < 0 (11 1!
Vo = IVO—kx x>0 et
V(x)
VD
Viey=Vy-Dx
E N
\ ‘
Fig. 11-6
()
where V; and & are constant.
(Vo- ) 7k
2 4./2m
Ans. (a) T = exp l:-ﬁ 2m(E =V + kx) dx} = exp [—m" (VO—E)”Z:I.
0
11.22. What is the probability of a particle with a zero angular momentum escaping from a central potential
J—VO r<a
Vi) = Y0 (11.22.1)
¢ I; r>a

2 o 200 2m Ea Fa Ea
Ans. P = exp|—¢ m| ——Ejdr| = exp |- JF cos~! =/ A\ T



Chapter 12

Numerical Methods in Quantum Mechanics

12.1 NUMERICAL QUADRATURE

The term numerical quadrature of the definite integral of a function f(x) between two limits @ and b is
accomplished by dividing the interval [a, b] into N small intervals, between N + 1 points denoted by

a=XpXy, ..oy Xy=h (12.1)
The points x; are equally spaced apart using a constant step h = (b—a) /N:
x; = xg+th i=0,1,...,N ({12.2)

The basic idea behind quadrature is to write the integrals as the sum of integrals over small intervals:

b a+h a+2h b
jf(x) dx = j flo) dx + f)de +-- + J- f(x) dx (12.3)
a b-h

a a+h

and in these small intervals approximate f(x) by a function that can be integrated exactly. We will demonstrate
two methods of quadrature. The first method is called the trapezoidal method; it is based on the approximation
of f(x) to a linear function, as shown in Fig. 12-1.

flx)

1
1
¥
I
I
t
1
)
)

)
)
)
)
'
1
1
)
)
!

|
.
u

Xg X| Xy Xy X

Fig. 12-1

LIPS

h
In this case, the integral fdx = [f(x;, D+l 7,80 if we denote f(x;)) = f, we obtain

i

b
1 1
J‘f(x)dxzh[§f0+fl+f2+---+fN_,+§fN} (124)
@
The second method is called Simpson’s method. It is based on the approximation of f(x) to a second-degree
[ 1. 4 1.
polynomial on three points. In this case, the integral J‘r‘ fyde=h|3fi+3f +3fi.qf 50

b a+2h a+4dh b
h
Jf(x)dx=J fx) dx + flx)yde+-- -+ f(x)dng[f0+4f,+2f2+4f3+u-+fN] (12.5)

a a+2hn bh-2h

214
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One should be constantly aware of the fact that these methods are only an approximation of the exact integral.
The approximation is improved as we consider larger N. In the trapezoidal method the approximation error is
proportional to 1/N?, while in Simpson’s method it is proportional to 1/N; i.e., in general, the Simpson

method is more accurate than the trapezoidal method.

12.2 ROOTS

In order to determine the roots of a function f(x) we must solve the equation f(x) = 0. All numerical
methods for finding roots depend on one or more initial guesses. In each algorithm approximate the root after a
given number of iterations. Note that by initial guess we do not necessarily mean a close guess for the root,
though the better the guess is, the faster the convergence will be (and less iterations will be needed). Thus, to
obtain the initial guess for a given root for the function f(x), it is helpful to first plot the function.

We describe three methods for finding roots. The first is called the bisection method. This method is useful
when we know that the root we seek is found in a specific interval, say, [ x|, x,], as shown in Fig. 12-2.

flx)

. '

Fig. 12-2

In this case we know that the signs of f(x,} and f(x,) are opposite. In the first iteration we evaluate f(x) at the
midpoint between x| and x,; then we use the midpoint to replace the limit with the same sign. In each succes-
sive iteration the interval containing the root gets smaller by a factor of 1/2, so the maximal error in our
estimation (if we assume that the midpoint is the root we are searching for) is simply half of the interval between
the new limits x, and x,. Thus, we need n = log,(g,/€) iterations to obtain the root with maximal error of
€/2. Note that €, is the initial interval, €, = |x, —x|| . The bisection method will always converge if the initial
interval [x, x,] contains a root (or singularity points).

The second algorithm, the Newton—Raphson method, uses the derivative f'(x) at an arbitrary point x, We
begin with an initial guess x'. Each new approximation for the root depends on the previous one:

i+l j‘(xl) s s
X7 = a - (12.6)
S
We stop when the value of |x'*! —.ri| is less than the tolerance we have preset. To understand how the method
works, we write (/2.6) in the form
faOH Y -y = 0 (12.7)

Notice that the left-hand side of (/2.7) is a linear extrapolation to the value of f(.x’ + '), which should be zero.

The third method, called the secanr method, is similar to the Newton—Raphson method. Here we do not
evaluate the derivative but use the approximation,

ALV NV I I
fys m e (12.8)

\_: . xl—l
Hence we obtain
P i ,\'i_xi—l f(x,) (12.9)
X S U — .
S —F@'
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12.3 INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS

Solving differential equations is of paramount importance in physics. Many key results of physics are for-
mulated in terms of differential equations. We introduce several methods for solving differential equations of
the form

dy
dr = flx, ) (12.10)
The methods differ in their accuracy, and in the time needed to obtain the required accuracy. One should decide
which method to use according to these criteria. Note that higher-order differential equations such as

2

d
ay _ F(x, y) (12.11)
dx*
can be written as
dz dy
T = F(x,y) z =0 (12.12)

Thus they can be solved using the same methods.
The first method, the Euler method, is the simplest and least accurate method. We write (/2.11) approxi-
mately as a difference equation:

Ay
Ar = JEY (12.13)

or
Ay = f(x, y) Ax (12.14)
We iterate the value of y(x) from a starting point y, = y(x,) by
Vo1 = YatFX v (X, —x,) (12.15)
Weset Ax = x,, ~x, = h(constant); thus,
Ynut = Yot fl0 ¥ )0 (12.16)

The point (x,, ,y,,,) depends only on the previous point (x,,y,). The accuracy of the iteration depends
chiefly on the choice of h; a smaller & gives higher accuracy. The error in the approximation of y is propor-
tional to A°.

The second method, the Runge—Kutta method, is based on the Euler method using an approximation of
f(x, ¥) by a given order of the Taylor series expansion. The higher the order of the Taylor series (i.e., the higher
the order of the Runge—Kutta method), the better the accuracy. Consider the second-order Runge-Kutta method:

n+1

Yar1 = Yathy (12.17)
where
ky = hf(x,y,)
{ ky = hf(x, +h/2,y, +k,/2) (12.18)
with an error proportional to . Similarly, the third order of the Runge—Kutta method is
Yns1 = Ynt é (ky +4ky + k3) (12.19)
where
[ k= AfC,y,)
i ky = hf(x,+h/2,y,+k /2) (12.20)
ky = hf(x, +h,y,—k +2k;)

with an error proportional to h*. The fourth order of the Runge-Kutta method is

1
Va1 = Yo+ g (ky+2ky + 2ky + ky) (12.21)
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where
ky = hfQ,y,)
[ ky = hf(x, +h/2,y, +k,/2)
ky = hf(x, +h/2,y,+k,/2)
ky =hf(x, +hy, +k)

(12.22)

with an error proportional to #’, and so on.

The Schrodinger equation is a second-order differential equation. Thus, the methods described above need
as an initial condition the value of the wave function and its derivative at a given point. Since the value of the
derivative of the wave function is usually not given, we are left only with the value of the wave function at two
points (the boundaries). We demonstrate here an algorithm to solve second-order differential equations with two
boundary conditions—the Numerov algorithm.

Numerov’s method is used to solve a differential equation of the form

2
4y + k?’(x‘y = 5(0) (12.23)
dx? '
We approximate the second derivative by the three-point difference formula:
T ko P T B e
PE =VYet 12 (12.24)

"

where y’ and y" are the second and fourth derivatives at point x,, respectively. Using (/2.23) we arrive at

2

"y £ 2
yo'= Sl-K@y+ssml (12.25)
Denoting k(x } = &, and S(x,) =S, we obtain
I 2 2 1 ¢
yn - _/_1—2[,(»1+lyn+]_2knyn+kn—lyn—l] +h2[“n+l_2Sn+Sn—|] (1226)
Substituting (/2.26) into (/2.23) we obtain
PR M - N (PRLIVE M
Lt 5k Yo =2 L=k )y, L+ 13k Yy = 10 Sae #1105, 455, (12.27)

where the error is proportional to A% . This error can be shown to be better than that for the fourth order of the
Runge—Kutta method.
Comment: All the following programs were written in standard FORTRAN 77 and were compiled on an

A

T ATY MO iy (0 a - [ pJ "N S N RS S [ o R PO o B Gu . U | s A
1DV ALA KO-DUUU WOrKstation. 11I€ pPrecision uscd was e a€ldaull precision KeAL ™ 4.,

Solved Problems

12.1. Write a FORTRAN subroutine:

Subroutine Simpson(FUNC,N,A,B,S)
INTEGER N
REAL FUNC (0:10000),A,R,S

This program computes the value of the integral of FUNC from A to B, using ¥ iterations of the Simpson
method. FUNC(0 : N) is an array of N + | values of the integral at N + | points separated by
h = (B—-A)/N. The value of the integral is updated in S.
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Consider the Simpson rule and note that

h
S = 3 [FUNC(0) + 4*FUNC(1) + 2*FUNC(2) + 4«FUNC@3) + - - - + FUNC(N)] (12.1.1)
The cummatian i clichtly different for an odd and even N. One wav to nerform thig summation ic ag followsg
ne summalion 15 Ssignuy GIilerem ior an 0ad anda ¢ve T ay e pe s summation s as {0l

§ = FUNC() + FUNC(N)

Do loop I from 1 to N-1
if 1 is even

S = §+ 2FUNC(®

else

§ = §+4*FUNC()

end if

end do

§=8«B-A)/(3*N)

This algorithm can be written in FORTRAN 77 as follows:

C** Subroutine to compute the value of a definite integral.
Subroutine Simpson (func,n,a,b,s)
integer n
real func (0:1000) a,b,s
s = 0.
s = func(0)+func(n)
do 1 i=1,n-1

C** (1- mod(i,2)) eguals 0 1if i even and eguals 1 if i odd.
s = §+42*2**(1- mod(i,2))*func(i)
1 continue
s = s*{(b-a)/(3*n)
return
end

Write a program to compute the integral

b
J ¥ dx (12.2.1)

using the Simpson method. The program should get as input the boundaries a, b, and N described in the

Summary of Theory. Use different values of N for @ = 0 and b = 1 to obtain accuracy of 1 x 10 ~.

Consider the following program:

Program Problem 12.2
integer n

real func(0:1000),a,b,s
real x,h

C** Get the boundaries of the interval.
write (*,*)’Enter the interval bounds a and b:’
read (*,*) a,b

C** Prepare file of results.
open (unit=1,file='results.txt"’)
write (1,*) 'The value of the integral of the function exp(x**2)’
10 format ('from’,f4.2, ‘to’,f4.2)
write (1,10)a.,b
write (1,*) ' N S The integral’
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C** Get the number of points N.
2 write (*,*) ‘Enter the number of points N (0<«N<1001):°’
write (*,*) 'Enter N<0O to stop’
read (*,*) n
1f (n.gt.1000.0r.n.1t.1) goto 3

C** The step value between points.
h=(b-a)/n
C** Compute the value of the function on the N points.
do 1 1i=0,n
X = a+h*float (i)
func(i) =exp(x*x)
1 continue

C** Compute the value of the integral.
call Simpson{func,n,a,b,s)

C** Print results.
write (1,*) n,s
write (*,*) n,s
goto 2

3 stop
end

C** Subroutine to compute the value of a definite integral.
Subroutine Simpson(func,n,a,b,s)
integer n
real func(0:1000),a,b,s
5=0.
s=func (0)+func(n)
do 1 1=1,n-1
C** (1-mod(1,2)) equals 0 if i even and equals 1 if i odd.
S=5+2*2** (1-mod(i,2)) *func(i)
1 continue
s=s*(b-a)/ (3*n)
return
end

Running this program gives the following:

N S The Integral N S The Integral
20 1.347725272 100 1.4 50347781
20 1.402942777 110 1.4 51459050
30 1.422343731 120 1.4 52386498
40 1.432232141 130 1.4 53171015
50 1.438225508 140 1.4 53844905
60 1.442246556 150 1.4 54429030
70 1.445130706 200 1.4 56477404
80 1.447300673 500 1.4 60176587
90 1.448992372 1000 1.4 61413145

Notice that we used the subroutine that we have written in Problem 12.1. Using many subroutines makes the pro-
gram more readable, though it often slows the program.
The output results show the values of N and the corresponding values of § for A = 0 and B = 1. From these

results we sec that different N values correspond to different § values, though for large values of N the value of § is
more stable, i.e., the changes in its value are small. We also see that after N = 80 the first two digits after the decimal
point do not change in S. This leads to the assumption that we have already achieved an accuracy of at least
I X 107 This conclysion is mostly true for well-behaved functions like the one we are dealing with in this problem.
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12.3. Write two different Fortran programs to solve the equation cosx = x.Consider an accuracy of five dig-
its after the decimal point. Use the bisection method with x, = 0 and x, = 1, and the Newton—Raphson
method with x, = 1.

Consider the graph of the functions y = cos x and y = x shown in Fig. 12-3.

y
yv=x
y=cos(x)

Fig. 12-3

The solution of cos x — x = 0 is the value of x, where y = cosx and y = x intersect. We conclude from Fig.
12-3 that this happens in the interval [0, 1]; hence, a good starting guess for the bisection method would be
x, = 0and x, = 1. For each iteration we will get a new value XM = (x1 +x2)/2, and we will compare it
with the value of XM in the previous iteration XMOLD. If the difference between XM and XMOLD is consist-
ently less than 1 x 10™ then we have an accuracy of five digits. Consider one way to write the program:

Program Problem 12.3-1
real x1, x2, =xm, xmold
real toler, fl1, f2, fm,f
integer iter

C** Initialize iterations number.
iter=0

C** Initial guesses.
x1=0.
x2=1.
xm=(x1+x2)/2.
xmold=x1

C** Maximal error in the approximation.
toler=0.00001

Cc** If the new iteration does not give the same result of the previous
iteration
C** within toler do the following:
do while (abs(xm-xmold).gt.toler)
iter=iter+l
C** Evaluate the f(x) at the different points.

fm*£1).1t£.0) then

C** Tf the sign of f(xm) is similar to that of f(x2) then:
X2 =Xm
else
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C** If the sign of f(xm) is similar to that of f(x1l) then:
x1l=xm
endif

C** Remember the result of the previous iteration.
xmold=xm

C** new 1teration:
xm=(x1+x2})/2.
end do

C** Print result.
write (*,*) 'The zero of f(x) is:’,xm
10 format (’'obtained after ’,1i3,’'iterations.’)
write (*,1Q0) iter
stop
end

C** Function for which we want to find the zero.
real function f(x)
real x
f=cos(x)-x
return
end

This gives the result:
The zero of f£(x) 1s 0.7390823364 obtained after 16 iterations.

Similarly, for the Newton—Raphson method we need only one starting guess x1, and we will use the same criterion
for stopping the iterations. Recall that x'*! = x'—f(x)/f'(x"). If f(x')/f'(x") is less than the tolerance the iterations
will stop,

Program Problem 12.3-2
real x1

real f£1,dfl,toler
integer iter

C** Initialize iterations.
iter=0

C** Maximal error in the approximatiocn.
toler=0.00001

C** Initial guess.
xl=1.

C** Evaluate the function f(x)=cos(xX)-x and its derivative at x=x1:
fl-cos(xl)-x1
dfl=-1.*sin(x1)-1.

C** Tf the new iteration deoes not giv
iteration
C** within toler do the following:

do while (abs(fl/dfl).gt.toler)

C** New iteration.
iter=iter+1l
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C** Evaluate the function f(x)=cos(x)-x and its derivative at x=x1:
x1l=x1-f1/df1l
fl=cos(xl)-x1
dfl=-1.*sin(x1)-1
end do

C** Print result:
write (*,*) ' The zero of f(x) is:’ ,xl

10 format (‘obtained after’ ,13, ' iterations.’)
write (*,10) iter
stop
end

This gives the result:
The zero of f(x) 1is 0.7390851378 obtained after 3 iterations.

We see that both methods give the same results after 16 iterations. The Newton-Raphson method gave the
result after only three iterations, confirming thai this method converges faster ihan the bisection method. This
is usually the case, though sometimes the Newton—Raphson method diverges, while the bisection method
converges.

Find the lowest bound state energy for an electron moving under the potential

-V, 0<z<a
Vix) = | z<0 (124.1)
0 otherwise
where @ = 2 A and V,, = 10 eV (see Fig. 12-4).
V(z)
d
2z
Fig. 12-4

The Schrodinger equation for bound states, -V, < E < 0, is (see Chapter 3)

y =20 for z<0 (124.2)
hzdﬂy
—m?—vow = Ey for 0<z<a (124.3)
# dzu,l
_E’F =FEy for a<z (124.4)
z

2
. . d 2
Equation (/2.4.3) yields ;;“2-! = —ﬁ—’? (E+ Vg y with E+V,>0. Thus,

Y(z) = A sin(k;z) + B, cos (k2) for 0<z<a (124.5)
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2

. . d 2mE
where k; = 2m(E+V,) 7k Similarly, (/2.4.4) yields d\l! = —%‘V- The solution is

Y o= Azek2z+Bze"‘2: for a<z (124.6)

where k, = J-2mE/#’ . The wave function should satisfy the boundary conditions Y(z = —ee) = 0 and
W(z = o0) = 0. The boundary conditicn z — —e= is already saltisfied, while the second boundary condition z —
is imposed by A, = 0. Now y must be continuous, so we must satisfy the conditions B, =0 at z =0 and

A sin (k) +B cos (ka) = Bze‘k2a (at z=a) (12.4.7)
This yields A,sin (k@) = B,_eikl". Similarly, y' must be continuous; hence
Ak cos (k,a) = -B,k,e " (at z=a) (12.4.8)
So, together we have
k cot(ka) = —k, (124.9)

Solving (/2.4.9) gives the eigenenergy states for the electron. Note that minimal energy corresponds to minimal
k; and k,; thus we should solve this equation numerically to find the minimal values of k; and &,. To do this

OUld aVCs O &y QLo

we write k, interms of &, :

2

% 2 _2mE

2m
= +?(E+V0) ky = e

2 2,2 2mV, . f 2 2 .
s0, 2mV0/fL = k\+k, or, k, = |—5— —k|. Thus we obtain —cot (k,a) = 2mV0/fl — k| 7k, . Replacing
k,a by x we arrive at h

J2mV at /Rt -5

—cotx = P (12.4.11)

(12.4.10)

| ——
. A/2m‘l/0a?‘/fl')'—x2
To find the minimal energy we draw a graph of y = —cotx and y, = " and compute the value
of x in the first intersection point between y; and y,; see Fig. 12-5. ’

Y2 Y

) )

>, 7

Fig. 12-§

The value of ZmVOavz/ﬁ2 is 10.498597. We can use the program written in Problem 12.3 with the following
function:

C** Function for which we want to find the zero.
real function f(x)
real x
f=tan(x)+x/sqre(10.49859654100631-x*x)
return
end

From Fig. 12-5 we see that the x-value lies in the interval [2, 3] ; so these will be our initial guesses in the program.
Running the program with the appropriate changes gives the following result:

The zereo of f(x) is 2.336280823 obtained after 16 iterations.
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This means that &k a = JZmaz (E+Vy) /7 = 2.33628. Thus, the minimal energy eigenvalue is
E+V,=52¢eV (12.4.12}

Using the Numerov algorithm, write a program to solve the Schrodinger equation for an electron in a
potential well:

0 0<x<a (125.)
Vi = o otherwise o

Itis given that a = 1 A. The program takes as input an initial guess for the energy value and gives as
output the closest higher-energy eigenvalue. Compare your results to the analytical ones.

The Schrodinger equation for this case is

2
dy 2mE
il S =0 1252
de ﬁz ‘U ( )
Introducing the nondimensional variable & = x/a, we arrive at
dzw 2ma’E
— + =0 (12.5.3)
dCZ P v
This equation is of the form
4’y
Ky = S (12.5.4)
N

where S(x) = 0 and k’(x) = const. = 2mEa’/#°. Inour program we put in as an input the value of £ and compute
the initial value of y({ = 1) - (psip). Then, using the Numerov method we integrate the equation for k;. We
start from y(0) = 0- (psim) and add to & an amount d4 and iniegrate again. In each ieration we add dk uniil we
get a value of psip that has the opposite sign of the initial value of psip. At this point we back up the value of &
and jump in smaller steps dk than the value of 1 x 10", We do this since we know for sure that we passed over the
value of & that we are trying to converge to. Running the following program with £, = O gives the results shown
at the end of the program. Note that we expect the convergence to correspond to the ground state, since it is the
highest eigenvalue that is close to £ = ().

Program Problem 12.5
real k
real toler,psip,psiold

C** Get initial value of the wave number
write (*,*) 'Enter the starting value of the wave number k:
+ (k<0 to stop )’
read (*,*) k
if (k.lt.0.) goto 20

C** Initial value of the step.
dk=1.
toler=1.E-05%

C** Integrate the equation with initial value of k.
call intgrt (k,psip)
psiold=psip

C** Change the value of k.
10 k=k+dk

C** integrate again with different values of k.
call intgrt (k,psip)
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C** If psip changes value backup

if
k=

NUMERICAL METHODS IN QUANTUM MECHANICS

((psip*psiold) .1t.0)

k-dk

dk=dk/2
endif

then

(the secant method) .

c*+* If convergence is not achieved try again.

if

(abs (dk) .gt.toler)

write (*,*)
write (*,*)
write (*,*)

20 st
end

op

’

i

k

’

goto 10

The result is:’
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C** Subroutine to integrate the Schrddinger equation using the Numerov method
Subroutine intgrt (k,psip)

C**

C**

C**

C**

C**

real k,psia,psiz,h,const

integer nstep

Number of steps

nstep=100

Step value of normalized x.

h=1.

/nstep

Left boundary condition.

Pps
jo2-]

im=0.
iz=.01

const=(k*h)**2/12.
do 10 1x=1,nstep-1

Numerov method eguation:
psip=2*(1.-5.*const) *psiz -(1.+const)*psim
psip=psip/(l+const)

psim=psiz
psiz=psip

10 continue

write(*,*)

re

o
il

curn
d

The result achieved.

'The wave number:’, k

Running the program with a starting value k = 0.0 yields the following:

The wave number:

o W W N

.000000000
.000000000
.000000000
.boooQoo000
.500000000
.250000000
.125000000

W W oW W W W

.250000000
.187500000
.156250000
.140625000
.156250000
.148437500
.144531250

The result is 3.141586304.

W W W W W W

E

.142578125
.141601562
141113281
.141601562
.141357422
.141601562
.141479492

252
_nﬁ 5

2ma’

n

W W W W W w W

.141601562
.141540527
.141601562
141571045
.141601562
.141586304
.141601562

Consider now the analytical solution. The eigenenergies are given by

(4.5.5)
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2ma’
h?.

The ground state is £, = which corresponds to &, = E, =1 = 3.1415926.. ..

PR

2ma
Consider the Schrodinger equation for potentials with radial symmetry V(x,y, z) = V(r) and cylindri-
cal symmetry V(x, y) = V(p), and demonstrate how to solve these equations.
For a problem with central potentials V(r), the solution of the Schridinger equation can be written as
R(n)
yr) = —=Y,6,9) (12.6.1)

where Y, (8, 0) is the spherical harmonic, and R() is a function of r satisfying the radial equation
d°R 2M[ i+ 1)#?
St BT
dr h 2Mr
where E, [, and M are the eigenenergy, angular momentum, and mass, respectively, One can see that (12.6.2) is of
the form of Eq. (/2.23) with

- V(r)} R(r) = 0O (126.2)

IMI T+ 1) A2

1 ]
- == SRR .
S(ry=0 and K@) = 7 LE— > —V(r)J (12.6.3)

Mr
This equation can be solved numerically using the Numerov algorithm (see Problem 12.5). Similarly, for problems
with a potential that has a cylindrical symmetry V(p), the solution is of the form
R(p) imd ,inz
el (12.6.4)
P

v(p, 9,2) =

where m is the angular momentum in the z-direction,  is an integer, and R(p) is the solution of
@4_%4 A2 RI(mP4n?)
dp® " K2 | 8Mp? M
where E and M are the energy eigenvalue and the mass, respectively. Also in this case it can be seen that this equa-
tion is of the form of Eq. (/2.23) with

+E—V(p)]R(p) =0 (12.6.5)

M

2 2 2 2
S(p)=0 and kz(p)Z ?|: ﬁ ﬁ (m +n)

8Mp2— M

+E- V(r)] (12.6.6)

Hence this equation can also be solved with the Numerov method.

Supplementary Problems

AN cathhacniition ne
DALY JuvIuuLc.

Subroutine Trapez (FUNC, N, A, B, S)
INTEGER N
REAL FUNC (0O : 1000), A, B, S

which computes the value of the integral of a function whose values are N + | points, given in the array FUNC in
the interval [A, B]. The points are separated by h = (B-A) /N.

Ans.
C** Subroutine to compute the value of a definite integral.
Subroutine Trapez (func,n,a,b,s)
integer n
real func(0:1000),a,b,s
5=0.
s=(func(0)+func(n)) /2.
do 1 i=1,n-1
C** {(l-mod(i,2))eqguals 0 if 1 even and equals 1 if i odd
s=s+func (i)
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1 continue
s=s*(b-a)/n
return
end

12.8. Solve numerically the integral obtained in Problem 5.3:

1
2 2
Py=1- K an (12.8.1)

Q0

Use your preferred method.

Ans. Using the program of Problem 12.2, and changing the line func(i) = exp (x«x) into
func (i) = 2/sqrt(acos (-1.))*exp (-x*x) (12.8.2)

we obtain P, = 0.1578. After calling the subroutine Simpson, we add the line
s = 1-5 (1283)

12.9. Solve the equation x* -5 = 0 with the initial guesses x1 =2 and x2 = 3. Use the secant method

) ] xi_xbl
Xt =y —foYy (12.9.1)
FG)=f(x'™)

Obtain an accuracy of 1 x 107°.

Ans.
Program Problem 12.9
real x1,x2,xtmp
real fl1,f2,toler
integer iter
C** Initialize iterations’ number.
iter=0
C** Maximal error in the approximation.
toler=0.00001
C** Initial guesses.
x1=2.
xz=3.
C** Evaluate the function f(x)=x**2-5 at xX=x1 and at x=x2:
fl=x1*x1-5.
fz=x2*x2-5.
C** If the new iteration does not give the same result of the previous
iteration
C** within toler do the following:
do while (abs(x2-x1).gt.toler)
C** New iteration.
iter=iter+1
Xtmp=x2-£2* (x2-x1)/(£2-£1)
x1=x%x2
X2=Xtmp
C** Evaluate the function f(x)=x**2-5 at x=x1 and at x=x2:
fl=x1*x1-5.
f2=x2*%2-5.
end do

C** Print regult:

write (*,*) ‘The zero of f(x) is:",xl.

10 format (’obtained after ',13,* iterations.’)
write (*,10) iter
stop

end



Chapter 13

Identical Particles

13.1 INTRODUCTION

Suppose you have a basketball and your friend has a soccer ball with the same mass; you kick them toward
each other, simultaneously, with the same velocity. Two things can happen: (@) The balls collide and each ball
goes back to its owner. (b) The balls travel through parallel paths without touching and exchange hands. Since
the balls have different shapes and colors you can tell which possibility occurred, (a) or (b). But if the balls were
identical, you would not be able to tell what happened! When we consider identical quantum particles the situ-
ation gets even worse as we cannot even trace the exact trajectories of colliding particles. In this chapter we
examine the special properties of a system composed of identical particles.

13.2 PERMUTATIONS AND SYMMETRIES OF WAVE FUNCTIONS

Definition: We say that particles of a system are identical (or indistinguishable) if no observer can detect
any permutation of these particles.

The property of indistinguishability gives rise to symmetries in the system. Consider a system of # identical

particles with the eigenvector |¢,) for the particle / (i = 1, ..., n). We denote the state of the system by a vec-
tor of eigenvectors |,), I¢,), ..., I¢,), keeping in mind that different ordering of the |¢) 's in two vectors
corresponds to different vectors, e.g., if n.=2, (16}, 16,)) 2 (1¢,), 10 ). If 0 is a permuration on the letters
1,..., n, then it can be written as
G=[ 1 2 3 - n ] (13.1)
G6(l) 6(2) 6(3) ---G(n)
meaning that the vector 1,2,...,n becomes (|G}, [G,),...,|0,)) after the action of 6. Thus, ¢ permutes

the eigenvectors:

GUDY - 10,)) = (Dgr)s- - -+ Do) (13.2)

One can see that ¢ acts as a linear operator. A permutation ¢ may be written as a product of transpositions,
i.e., permutations that swap two letters. If the decomposition of 6 consists of an even number of transpositions,
then o is called an even permutation, and we write sgn (6) = 1, and if this number is odd, then ¢ is called an
odd permutation denoted sgn(6) = —1. The vector ju) = ¢ ), ...,[0,) is said to be symmetrical if
ol|u) = |u) for an arbitrary permutation ¢ . The same vector is said to be antisymmetric if 6lu) = sgn (0) |u)
for an arbitrary permutation 6, We define two operators:

Al
§= 2 G (13.3)

O permutation

and

R 1
A= ] Z (sgnc) 0o (13.4)

O permutation

S and A project the entire space of wave functions H on two subspaces: the space of symmetric wave functions
ag, and the space of antisymmetric wave functions a,:

H =SH H,=AH (13.5)

228



CHAP. 13] IDENTICAL PARTICLES 229

and in addition H = H, @ Hy; that is, every vector is a unique sum of a completely symmetrical vector and a
completely antisymmetric vector. The verification is given in Problem 13.2.
An arbitrary annsymmemc wave function can be written |u,) = Aluy for a wave function lu) =

(Id,>, . ...1d,)). Hence, if {Id)U >} is a basis of the single-particle space of states, then a basis of the antisym-
metric space of all n particles is given by applying A on a basis of the entire space, spanned by I¢j D, . |¢ ”
thus,
o, > = AlaeD . k) = Y (sen o) (1.l
(o3
or

B D - leh

) 105 - 165
I(XA, ) = —. : : (]36)

o S 7o

is a basis of H, . The last equality comes from the properties of the determinant. (Note that this is sometimes
given as the definition of a determinant.) This determinant is known as Slater’s determinant and is the solution
for the Schrédinger equation for noninteracting fermions.

13.3 BOSONS AND FERMIONS

From experimental observations it seems there are two kinds of particles, The first kind consists of particles
that have completely symmetrical wave functions; they are called bosons. The second kind consists of particles
with completely antisymmetric wave functions; they are called fermions. There are no particles with mixed
symmetry. Pauli’s exclusion principle is a basic principle that is valid only for identical particles that are fer-
mions, This principle states that two identical fermions cannot be in the same quantum state. An alternative
formulation of this principle asserts that the probability of finding two identical fermions with the same quantum
numbers is zero.

Solved Problems

13.1. (a) Compute the number of permutations on n letters. (b) Show that a product of two permutations is
also a permutation,

(a) The number of permutations equals the number of different orderings of n distinguished letters; the first letter
has »n places, the second letter has n - 1 places, etc., and the nth letter has only one place. Hence, there are

n(n=1)(n-2)--+- 1 = n! permutations.

(b) A permutation is a function o from the set {1, ..., n} to itself that is bijective, i.e., o(/) #o(j) if i#/ and
every j equals G(j) for some j. A composition of two such functions is also a bijective function from
{1, ..., n} toitself, and hence a permutation.

13.2. Show that S and A are Hermitian operators.

Let ¢ be any permutation, and denote [} = (|0} ..., [¢,7) and v} = (|8, ...,18,)); then
(V1Gu> = ((ellv e e s <en|) (Iq)c(])): LI !q)o'(n))) = (el|¢o(l))(ezl¢c(2)>' * '(enlq)o‘(n))

= (01, [0 (81 102 (8 1 o) = (va ' [w) (13.2.1)
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T -1
Hence, 6 = ¢ and therefore

~fl +l _1l
R D IS~ YA I YR

o permutation O permutation O permutation

1]
s

(13.2.2)

Also,

“t | | _ 1 o 1 R
A =52(sgn o)of=mz(sgn c)c™ =n—!2‘(sgncs')csl =52(sgn C)0 = A (13.2.3)
g a g

o4

Prove that S|u) is a symmetric vector and A |u) is an antisymmetric vector for an arbitrary |u) .

We prove that .§Iu) is a symmetrical vector by showing that for an arbitrary permutation t, ‘r(,§ [ee)y = §|u), S0

- 1 1 | ~
TSluy = TrT!Z(’l") = n—!ZTolu) = Ezc'lu) = She) (13.3.1)

Similarly,

- 1 |
TAlu) = 1'72 (sgn o) Cluy = H—!Z(sgn o) oty

-~
P
Loy
o
to
-~

Note that the permutations form a group: thus every element has an inverse, and therefore

Zc = 20" = tzo (13.3.3)

We used the fact that sgn (1) = (sgn @) (sgn T), which can be verified.

a2 ~ a2 ~ - A A A
Showthat: (@) S =S: (M)A =A:(c)AS =SA = 0.

(a) Using the results of Problem 13.3 we can write

a ( 1 — ‘ 1 —— 11— 11— .
a2 i l - 1 S A 1 N A 1 S A mt A ~
S = l’? GJS = H_!LOS = rT!LGS =2 S =aS =8 (134.1)
[0} g a o
(b) Asin part (a) we have
A2 1 N 1 - 1 ~ -
A = EZ(sgn O)CA = M—!Z(sgn O) (sgn O)A = EZI ‘A=A (13.4.2)
g ag g
(c) By definition,
o 1 - 1 -
AS = mE(sgn o)oS = n—!Sngn c=20 (i3.4.3)
o o

and

- n 1 - 1 -
SA = FZGA = mAngn c=0 (134.4)
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13.5. Use the symmetrization postulate for fermions to derive the Pauli exclusion principle.

The symmetrization postulate for fermions states that the wave function of a system of » identical fermions is
completely antisymmetric. Thus, it is a linear combination of vectors of the form loa},I ,.>- These normalized vec-
- . e
tors can be written as

O Y R
165 162 - k)
: : (135.1)

(0 S )

Hence, if two particles are in the same quantum state, two columns are the same, forcing the determinant to vanish;
consequently, no nontrivial wave function exists in this case. This result proves the Pauli exclusion principle.

The Slater determinant for two fermions is given by
107) 167

] , :
o | 2 101)102) - 0)l02) (136.1)
2 2

I
(1, 2)) = 3,

and

|
(2, 1)) = 3 (162167~ 10:)16)) (13.6.2)
thus, (2, 1)) = —[u(1, ).

13.7. Show that the Slater determinant is a zero-order approximation to the Schridinger equation of a system
of n identical fermions.

Consider the Schrodinger equation H (1,2,...,m) |y} = E}y). Neglecting the interactions between the par-
ticles we write Ho (1, 2, ..., n) for the zero-order approximation of H:

Ho(1,2,...,n) = Ho()®--- ®Ho2) (13.7.1)

Forevery iﬂ{;)(z') we have ]}B([)kpf) = Ef|¢j,), where J stands for particie number and j counts the different eigenvec-

tors and eigenfunctions. Since the Slater determinant is a combination of different eigenfunctions such as
J . . . .
|¢|‘)- . |¢J,:) and since the particles do not interact, the function

1 1y R PS
ISR | & AR 4

07) 102 - 1oh)

by
1/

1
|, 07 = In (13.7.2)
oy ek

is a solution to the equation 1:10 vy = Ely).

-
EJJ
<]

Three imaginarv “coinlesc’” farmiong are confined 1o a one-dimensional bhox of len
ih 1 nary s s’ fermipns are conrined 1o a one-dimensional box of len

AN ArLEG

ment potential is

{0 0<x<L
(13.8.1)

) otherwise

We assume that there is no interaction between the fermions. (@) What is the ground state of the system?
() Find the state of the system.
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(@) As shown in Chapter 3, the eigenstates of this system are

2, (mnx n’hin’
W, = »\/;_JS'“(—L_) E, = 3 (13.82)
2mL
Since two fermions cannot occupy the same state, the three fermions are in distinct states, and since the system
2,2

is in the ground state, the states will be ¥, W, and y, with a total energy L ( 17+ 2% 4 32) . Schemati-
m

cally, the structure of the system is depicted in Fig 13-1.

Energy A
n=4
n=73
n=2
* a=1
Fig. 13-1

(by The antisymmetric state is given by

‘Iw.(-\’.» o)) IWs(x, )

. l | \ 1 \ 1 I's A% Y
v = (normaiizing factor) x (Siater determinant) = 7:' Wl Wk, a(xg)

W)y IWo0)) ()

13.9. Repeat Problem 13.8 for three electrons. Ignore the Coulomb interaction between the electrons.
(a) An electron has spin 1/2; thus, the eigenstates and eigenvalues are

e Bl vee )

where E, = 72#2n%/2mL’ . The additional degree of freedom, namely, the spin, allows us to put two electrons
in the first energy level, since this energy level corresponds now to two different eigenstates: spin up and spin
down. Thus, there are two possible configurations for the ground state; they are depicted in Fig. 13-2.

Energy A . Energy A

’ n=2 or, I n

A I I A
T I n=1 I ] n
K v |

Fig. 13-2

(h) There are three basic functions for each diagram in Fig. 13-2. For the left diagram we have y7, y, ;. and for
the right diagram we have y7, w,, ¥,. Using the slater determinant we get
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13.10.

13.11.

NTHER BTN R I TEN)
Yop = %6 W)Y W00 Iw3(xp) (13.9.2)
WG W) Iwa(xa))
and
W)Y (D) Iwa(x))
P = T WD) W) W) (13.93)

A system is composed of two fermions with spin 1/2. Find the “two-particle density function” and the
“one-particle density function” if both electrons are in different normalized orthogonal states.

Suppose that each of the electrons has a different spin |, (r) :+} and | ¢,(I) :-). respectively. In this case the
common wave function has the form

(l, 2, ry, l‘2)> = () 4 f, (1) ;')_I(Dl(rz);*') |¢2(r]) 37 (13.10.1)
So,
Puvoper (T 1) = CWlw) = [0,(r) [Ploar |+ 0(rp) Yo, rp|’ (13.10.2)
and
poncpa.r_(rl) = Iptwopar.(rl’ rl) d3r2 = Iq)l(rl)‘2 +|¢2(rl)|2 (13103)
If both electrons have spin }+), we obtain
WL, 2,1, 1)) = [6,(r);+) |¢2(l‘2);+)—|¢](l‘2) ;+>|¢2(r|)§+) (13.10.4)
and

Proper T T2y = [0, [0, (r} | = 20,(r) 0,(r) 0,(r 0,(ry) +]oyr)[|o,(rp|°  (13.10.5)

A system contains two identical spinless particles. The one-particle states are spanned by an orthonor-
mal system {|¢,)}. Suppose that the particles’ states are |¢,) and |¢j) (i #). (a) Find the probability of
finding the particles in the states |&) and [n) (not necessarily eigenstates). (h) What is the probability
that one of them is in the state |1£)? (c) Suppose now that the particles are not identical and they are meas-
ured with an instrument that cannot distinguish between them. Give an answer to parts (@) and (b) in this

Anoa
waddl.

(@) The symmetric state of the system is given by

@, = 75| 1000/%) + 10} 1o, (13.11.1)
The new state is also symmetric; it is given by
®, = _Jl—pj £ DY 4+ £ Dy (0 (13.11.2)
Thus, the probability is
Py = [(®| @] = [(&lo,) (nfo) + (n]0) (o))" (13.113)

(b) Consider the symmetric state that corresponds to [€) and 10 the eigenstate [¢,):

1 o) = ﬁ[m“’)m%!¢£“>|&>] (13.114)
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In order to find the probability of one particle being in the state |£) we multiply D, %) on the left-hand side
with (®,| (the original state) and sum over all &:

Po= Y D 1D, S = ¥ [0 18 0. l0) + (0 1E) (6 |0
Z Hl Iy g.mk | HI THpRENT A i T A
k A
= ) (008, + (088, = (0,8 + |08 (13.11.5)

A
(¢) The state of the system is now |@,). Hence, by multiplying with the final state (£'V|(n 2] + €@ "] we
obtain

Py = (€@l + [E2 D@ = (&6 (nlo) + (Elo) (o) = P, (13.11.6)

and

Py= Y olopf = D o e @le]’ = P, (13.11.7)
k i

13.12. Suppose that a domain D contains » identical particles, and outside D there are additional ideatical par-

ticles such that the interaction between particles not in the same domain is negligible. Show that in
discussing region D it is enough to do antisymmetrization of the n particles in D without considering the
rest of the identical particles. In your answer refer only to the case of n = 2 fermions. (The result for
bosons is the same.)

Let ly) and |¢) be physical antisymmetric states of the D-particles. Those functions vanish outside D.
Neglecting the other identical particles, the probability of getting an eigenvalue of [y} when the system is at state
o) is @ = |(x|¢)|2. We now show that the same result is obtained when we do not neglect the other N —2
fermions.

Let {]6,} be a complete set of orthonormal physical (antisymmetric) vectors of the N — 2 particles outside
of D; thatis, |8) vanishes in D. Define F as a permutation between two particles in D or between two particles not
in D. Also, define G as a permutation between particles from D and particles not in D. There are 2! (N - 2) ! per-
mutations of the F-kind, and N! - 2! (N - 2)! permutations of the G-kind. The total physical state of the system

must be antisymmetric for all N particles. In the basis [¥8,),
X}, = CAx8) (13.12.1)

A is the antisymmetrization operator where C is a normalization constant, which we now compute:

phy

- 1 |
eldlxey = 5D sen otxeldlxey = g Y sen F(x01FIe) + D sen G(x‘e'|c|xe>w (13.12.2)

a o G /

By the definitions of |¥) and |8}, the second term vanishes; so

WN-2)!
—Nr (xe[x® (13.12.3)

: ! o
(relilxey = 57D csen P (o0 =

F

/ M
Thus C = N-2) 1 The probability of getting an eigenvalue of [x) for the two fermions when the
(N —2)-state is |y) and the D-state is |¢p) will be

Dok = Ylaelaccaon]’ = Y [xelatownl = D [xolow)’

!

P

]

Y e s o] = D18 0w = (xie) D46, v’ = [(x]o) (13.124)

i !
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13.13.
13.14.

13.15.

13.16.

13.17.

13.18.

13.19.

13.20.

Supplementary Problems

Prove that the Pauli exclusion principle does not hold for bosons.

Show expilicitly that the Slater determinant for three fermions is antisymmetric.

Show that any function on the real line is a sum of a symmetric and antisymmetric functions.
— —f(=x

Ans.  f(x) = fx) +2f( X) +f(x) 2f( ).

‘What happens to the Slater determinant if there is a linear dependency between |(|)"')- . -|¢"") ?

Ans. It vanishes.

Three particles are confined within the potential

[0 0<x<a and 0<y
Vix y) = ioo otherwise

A

b .
(13.17.1)

Find the ground state of the system when the particles are bosons.

4 _(nmx\ (nmny
Ans. g (r, 1y, 1)) = 1o, (rpd, (ryé, (ry), where 0, ny(x, y) = J;)sin( T)sin(yT).

Refer to Problem 13.14 and find the ground state of the system when the particles are “spinless” fermions. (That is,
use Pauli’s exclusion principle, but neglect the additional degree of spin.)

I‘D“(rl» |¢|2(r|)> l¢2|(r|)>
] ,
Ans. Wy (r,,ry,ry) = 7;‘ 101, (F)) 1015(r,))  1dy,(ry) ‘

[, ()} 1915y 16,,(r3)

Repeat to Problems 13.14 and 13.15, but now do not neglect the spin.
LDy 160D 16

Ans.  |yy(r, 1y, ) = -J%—T |67,(ry)> 16,,(rs)) 19,,(ry)) | and three additional possible states by substituting
167,(r)) 16,2} 10,5(r))

®},, &, and ¢;, instead of ¢,.

Repeat Problem 13.10, but this time solve for two bosons.

Ans. O, 2,1, 1)) = 1¢,(r):SP1o,(r) 8, +10,(r) S o,(r) 5,

<|¢,<r.>|2|¢2<r2)|2+|¢l(rz)lzl%(r.)lz $,#5,
|6,(r)) 0 + 0,(r)0,(r) | 5, =,

ptwo par.(rl’ rZ)

Pruallys Py = [0, + [050r )|

pone paL(rl)




Chapter 14

Addition of Angular Momenta

14.1 INTRODUCTION

Consider two angular momenta j, and j,. These momenta can be angular momenta relating to two differ-
ent particles or angular momenta relating to one particle (angular momentum and spin). These two momenta act
in different state spaces, so that all their components are commuting with one another. The individual states of
J, and j, will be denoted, as usual, as | j,m,) and | j,m,), so that (see Chapter 6)

(§i1ym ) = 8%, Cjy+ D | jmy)
Co ; 14.1
1]]:']1’”1) = ﬁm;l]]’";) ( J
and similarly for j,. The state space of the compound system is obtained by taking the direct product (tensor
product) of the individual state space of the two angular momenta:
ymy) @ Ligmy) = Uiy dy o mymy) = fmymy) (14.2)
For fixed j, and j,, m, and m, have the values
my=—,~nh+L..., J
S . (14.3)
My = —fo—Ja+ oo, Iy

where the set of numbers {j,, m,} and { j,, m, } are either integers or half-integers. The state space of the com-

pound system is (2j, + 1)(2/j, + 1)-dimensional space. The states |m,m,) are, according to their construction,
. 2 .2 .,

eigenstates of the operators {j,, i, J,., Jj5.1-

142 {jl.i}. J'. J,} BASIS

In the absence of interaction between j, and j,, the operators j, and j, commute with the Hamiltonian,
and thus | j,m,) and | j,m,) are also eigenstates of the system. However, if j, and j, interact with

H = Hy+aj,j, (where o is acoupling constant) (14.4)

then j, and j, are not conservezd, but J = j, +J, is conserved. Thus, it is better to transform to an eigenstate
basis of the operators {jf, jg, J . J.}. The eigenstates in this basis will be denoted by | j, j, J M)y=|J M), and
satisfy

{JZIJM) = BT+ 1) |[IM)

JIIM) = AMIIM) (#4.5)
In this case,
Jo= iy =g [Ji—daf + b ooy s (14.6)
and for each value of J,
M=—-J,—J+l, .. .,J (14.7)
Note that
i1IM) = 5%, Gy + 1D 1M (14.3)

236
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Therefore, using the identity

. . 2 .2 .2
2 =) i1 (14.9)

ﬁ2
B iIMy = U+ =y (U + 1) =j, Cy + DM (14.10)

As aresult, |JM) are also eigenstates of the operators j, - j,. Ina commonly employed terminology, one refers
to |/M) as an eigenstate in the coupled represeniation and to |m m,) as an eigenstate in the uncoupled
representation.

14.3 CLEBSCH-GORDAN COEFFICIENTS

The two sets of orthonormal states |#2,m,) and [JM) are related by a unitary transformation; that is, we
can write the eigenstates IIMS in terms of Im ", \ by

UMYy = ) (mymy|IM)im,m, (14.11)

My, My

where {m,m,|JM) are the Clebsch-Gordan coefficients. It is possible to obtain a general expression for the
Clebsch—Gordan coefficients. However, it is often simpler to construct the coefficients for particular cases.
They can be calculated by successive applications of J, = J, £ iJ on the vectors |/ M), using the following
relations:

.....

J VM) = AU+ -M(M £ D)/, M+

14.12)
Jilmpmyy= ﬁ,fj, (Jy+ D) —m(m+1)|m £ 1,my (
together with the phase condition,
V=Jy+J M=%, +j)) = |my=%j,m==%j) (14.13)
Some properties of the Clebsch—Gordan coefficients are given below:
(mymy|JM) =0 unless M=m+m, (14.14)
(m,m2|JM} is real (14.15)
5 j~
DD IMimmy (mymy|TMY = 8,8, (14.16)
my=—j my =
]|+J)_
Z 2 (m | IM) (JM| mimyy = 8, 8, . (14.17)
I=1iy=if M=

TT+ D =MM 1) (mymy L M+ 1y = [j,G+ 1) —m, (my+ D bmy 5 1, my|JM)
+ i Uat 1) =my(my+ 1) {mym,—1|JM) (14.18)

(mymy | IMY = (=1 ) ) (14.19)

<_m1’_m2"]’—M> = (_l)f|+12'-/<m1m2|jM) (1420)



238 ADDITION OF ANGULAR MOMENTA [CHAP. 14

Solved Problems

14.1. Consider two angular momenta of magnitudes j, and j,. The total angular momentum of this system is
then J = J] + Jz, where J and J2 are commutmg operators. Let |m m ) be the2 cozmmon elgenstates
of the observables {J,, Jz, .I' ,J5.1. Let M) be the common eigenstates of {J}, J5, J J_}. (a) Find
all the possible values for m, and m,. (b) Find the possible values for / and M. (¢) Show that the state
space of the compound system has dimensionality

J|+/3
z (27+1) = (2, +1) (2j,+ 1) (14.1.1)
S RTE
where j, and j, are fixed quantum numbers,

(@) Let us denote by |j,m ) the eigenvectors common to the observables {Jf.J,:}, of respective eigenvalues
Bj, (j,+ 1) and Aim,. Similarly, let }/om.) 3

nnnnnnnn A rQb e Ahktal ..,‘.—l ki I,...
v

e the eigenvectors common to {J5, /,.}. The state space of the
Lotnpounua DyDlLlll l\ ootdinea '6

. s dir et AF tmdigidnal ckara . o nf tho ey
[4wr]

Y taKing 1ISOr product o1 inaividuar state Spaces or ine WO allgi.ual

momenta. Thus,

Lym) @ Liyma) = 1fyadyi my, my) = lmymy) (14.1.2)
where j, and j, are fixed quantum numbers. The possible values of [m m,) are given by
{ml=_j]v '_j|+1,...,j|
my, = ~j,, —j,+ 1., (14.1.3)

where the set of numbers {j,, m,} and {j,, m,} are either integers or half-integers. The dimension of the state
space of the compound system is (27, + 1)(2/, + |) (according to the number of independent eigenstates for
basis |m m,}).

(b) The state space of the system is a direct sum of orthogonal subspaces of definite total angular momentum J.

Thus,

VM) = z {m,m,|IM)|m m.,) (14.1.4)

KT

where (m m,|JM) < 8, m, +m, &€ Clebsch-Gordan coefficients. Assuming that j, 2 j,, we have

J=ji=jn di—da+ ool ji 4], (14.1.5)
Consequently, the possible values of M for each value of J are

M=l -J+1,.....1 (14.1.6)

Clearly, each value of J in (/4.1.4) cotresponds to a subspace of dimension (2J + 1) of definite total angular

momentum.
(¢) Consider the left side of (/4.1.7). Using the results of part (b) and setting J = j, - j, +{, we find

Hth Yy,
Z 27+ 1) =Z[2(j,—j2+f)+1]
J=|j]--11I =0

1
= i{(2j|—2j2—1) + (2, +25,+ 1) (25, + 1)
= (2, + D (2j,+ 1) (14.1.7)

14.2. Two angular momenta of respective magnitudes J, and j, and total angular momentum J = 3tz
are descnbed by the basis |m,m,)=|j m)®|j,m,). By construction, the states |m,m,) are eigen-
states of {jl, jz, Ji.,J5tand J, = J, +J,.. (a) Find all the eigenvalues of the operator /, and their
degree of degeneracy. (b) Consider the states

{|W+> =\ =j,m :j2>

. } 14.2.1
y) = Imy = ~j,, m, :*Jz> ( )
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for which n1, and m, both assume either maximal or minimal values. Show that the states |y,)
and |y_ ) are eigenstates of J (as well as of J.) and find the corresponding eigenvalues.

(@) The basis states |m,m,) satisfy
.2 2, .
{J,|m,m2) = 2%, G+ 1) Im my)

2 2 (14.2.2)
Jalmymy) = B jy (jy+ 1) |m my)
where j, and j, are fixed quantum numbers and
{lelm,m?_) = him im, m,) mo= i, —h+h.oo
Iy dm my)y = himy|m m,) My = =y —jp+ 1, ., (1423)
where m | and m, are either integers or haif-integers. Using (/4.2.2), we immediately find
Jmmy = (J, +1,)Immy) = fi(m +m,)immy)=haMim m,) (14.2.4)

Consequently, the eigenvalues of ./, are 4AM, where the quantum number M = m + m, takes the values
M= - +/), -, +j) + L., j +)s (14.2.5)
The degree of degeneracy, g(M), of these values has the following properties:

1. Thevalue M = M., = (J, +/,) is not degenerate:
g, +j) =1 (14.2.6)
2. The degree of degeneracy is increased by | as M decreases by 1, until a maximum degeneracy is reached
for the value M = j —j,. The degeneracy remains constant as long as |M| <, — j, and is equal to
gM) = 2j,+ 1 —Ui-) sM<sj -, (14.2.7)
3. For M<-(j,~j;), §(M) decreases by | as M decreases by 1. The value M = M, = ~(j, +,) is not
degenerate. Generally, g(M) is an even function of M:
g-=M) = g(M) (14.2.8)

(b) From (14.2.7)and (14.2.8), the states |y, ) are eigenvectors of J, with respective nondegenerate eigenvalues
A, = +fi (j, +j,) . Since the operators J, and J° commute, we have

T v = Pl = A 0w, (14.2.9)

Consequently, the vectors |y, )= le\yi) are also eigenvectors of ./, with the same eigenvalues A, . How-
ever, due to the nondegeneracy of A, (or A ) the eigenvectors I\u+) must be proportional to |\|I+) (and
similarly, |\|l) is proportional to |y} ). Therefore g [y, )e< |y, ), sothat |y,) and |y ) are eigenvectors of
J* as well as of J.. Indeed, since |y, ) both correspond to the extreme possible values of m, and m,,

I\ s+ d\ ) =, my=4) = (I, J, +J L) Im =—-j, my=—j)=0 (14.2.10)
and
{(thzz) Iy = dy my =iy = Juighmy = i my =)
(G my = =y omy = ) =4 0y = gy oy = (142.10)
Therefore,

J2|‘|’:) = (-ﬁ*‘Ji"‘2J11J2:+J1¢J2-""J1-J2+)|\|’:>
= B G+ D) 4G+ D) 2] ) (14.2.12)
= B LG +0) + G+ + D1y

Thus lv,) and fy) both correspond to the same eigenvalue of 7 given by g (J+ 1)
=4 Gy +i) G+ i+ D).

14.3. Consider two angular momenta, both of magnitudeJ Let J = J, + J, be the total angular momentum
and P the mterchange operator defmed by P |mymy) = |m m,) (a) Find the eigenvalues of P (b)
Show that P commutes with J; [P J] = 0 (and [P J ] = 0). (¢) Obtain the simultaneous

eigenvalues of Jand P.

(@) Letus denote by |y) an eigenvector of P with an eigenvalue A; namely, p [y} = AJy). Therefore,
(PY 1wy = PPy = Xy (14.3.1)
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14.4.

(b)

(©)
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Expanding [y) in the (complete) Imlmz) basis, we have
W2 = D Gl b (14.32)
my,m,

However, by the definition ofiA’, (ﬁ)zlm,mz) = |m,m,), and then

By = D ommld (B)lmom) ) = W) (14.3.3)

my, oy

Comparing (/4.3.7) and (/4.3.3) we find that At =1 and, as a result, the eigenvalues of P mustbe A = 1.
The action of the operator J = J, +J, onthe basis states

Immy = 1jm,, jamp=|jm)®|j,m,) (14.34)

can be written as

(Jl +J2)|m|mg) = (J||j|m|>) ®|j2m2>+|j1m|)® (Jz{jzmz) (14.35)

Therefore,
B 3imymy) = 1jymzd® (3 jym)) + (3,1 iymah) ®1jym,) (14.3.6)
Similarly [using (/4.3.5) with the interchange m, ¢ m, |,
JPimymyy = Jimymyy = (J)1jymah) ®jim) +1jymy) ® (3,0 /,m,)) (14.37)
Clearly, the last two expressions, (/4.3.7) and (/4.3.6), coincide. Hence,
[P, J1=0 — (£, J1=0 (14.3.8)

The results of part (b) imply that the /M) basis vector can be taken as simultaneous eigenvectors of the set
{J 7, Ji, J 2, J:;ﬁ }. Equivalently, this means that [JM) states have definite parity £1 under the operator inter-
change P. Indeed, using (14.3.2) together with the symmetry property of the Clebsch—~Gordan coefficients,

h*l-7J

(mym,|IM) = (1) (mym,|IM) (14.3.9)
we find
P UMy = Z(MImleM)(iA’ Imymy) = Z(mlmzl-lM)Imzml)
my,m, my, ny
= 2 (mym M) |m m,) (14.3.10)

where in the last line we interchanged the order of the summation index. Therefore,

Pumy = -1y nmaliMy mymay = (-1 ) (14.3.11)
nty, m,
In particular, for j, = j, = j, the number J assumes the values / = 0, 1,..., 2j, and then
Pum = (-1 um) (14.3.12)

A system of two independent spin 1/2 particles whose orbital motion can be neglected is described by

1 1
the basis [§, = oL mp®|[S, = 3 my) = |m,m,), where |m,m,) are common eigenstates of S?, S;,

S| S, Consider the total spin operator $ = 8,"+8,, with components S = (S, S, §.) and magni-

tude S° = IS, + Szlz. (a) Apply the operators S, = S, £ iS and S, on states [m, m,} and calculate the

results. (b) As in part (a), apply s? = S? + Sg +28,.5,,+8,,8, +§8,8,, on|m m,) and calculate the

. . 2 o2 o2 . .
results. (¢) Construct the states |Sm ), which are eigenstates of S}, S5, 8", and 8, as linear combina-

tions of |m;m,). Find the corresponding eigenvalues and verify that SzlSms) = #°S (§+1)|Sm,) and
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S,ISmy) = fm|Sm).(d) Discuss the symmetry properties of the |Sm) under the interchange of the par-

ticles P |m m,) = |m,m,).

£ =\ T nnlailnte shha pntinn AF Q@ — € L Q nm otha ctotan e e \ win snteadnaa tha fallacg ing nas PSP
\U} 10U Laltuialc LiicC activii vl o - OI -+ \32 1 LI sLtaivd j#a llllz/, WO IHIUUUULC LT lUllUWlllE LouLaLIvlid.
1 1
m = £3, my=23) = {le e b4 1)
So

A 1 A
Slmmy) = > (6,® 1) |Imm,) = 3 (G|m ) Jm,)
5 . (14.4.1)
8,lm my) = j(ll ® G,) Imymy) = 51m,) (Glm,))

Here, 1 1,2 and 6, , = (6,0, 0,), , denote single-spin operators, which are represented by the 2 x 2 unit
matrix and the three Pauli matrices (respectively) and satisfy

G:|+> = |+> GZ|—> = -|—) 0+|_) = 2|+) 0‘|+> = 2|_>
(14.4.2)

o)=0  oly=0 (o,=0,%is, o =3

fi
The total spin operator, § = S, +§,, takes the form § = 5 (0, ® 12 + 1l ® 6,) and consequently,

h
I S. =§(012®12+11®02:)
2 (14.4.3)
1| S, =50 ®l,+1 ®0,,)
Therefore, using (/4.4.31) and (/4.4.31D),
[ S.J++) = hl++)
1 Sy =8+ =0 (14.4.4)
Sy = ~hl-)
Similarly, using (/4.4.31) and (14.4.2),
S,-) = S+) = A(l+-) +-4))
S+ = 8 |-+) = fil++)
S} = S 14 = Al (14.4.5)
Sl++y =812 =0
(b) In the notations of part (a) the operator 8§ = S, + Sz|2 equals
52
S . S (6476 ®a. +6 R4 +0 @5 ) (14.4.6)
S g 8+ a0 ¥G6, 76, ¥, +6,.¥6,) (ie.4.9)
1
where the identities §,.S,, +5,,5,, = 5(5,.5,. +§,.5,,)and o’ = (3)1 have been used. Therefore, from
(14.4.2)y and (14.4.6) we get
2
STH4+) = 7 (6+2) o) = 27 |44)

Y

g2 _—ff-z[(ﬁz Y+ Al)] = A () + 4
by = 7 [(6=2)[«-)+41-)] = & (1+-) +1-+)) (14.4.7)

S’+) = ST+

2

h
Sl = 7 (6-2)) = 207

(¢) By direct inspection of Equations (/4.4.4) and (14.4.7) and in accordance with the results of Problem 14.2, we
find
Sz|++) = 2ﬁ2|++} S |++) = Al++)
2 2 (144.8)
Sy =28 S = Al
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Moreover,

ST (4} + -0y = 287 ([+) +-4))

and
S (=) +1+) = S.(J+) -]+ =0
Therefore, up to the unimportant global phase we obtain

S=1Lm =1) = |++

1 =
5= 1m, = 0) = J= (}+-) + ) §=1
triplet
= Lom, =—1) = |-
1 =0
1S =0,m, =0) = 5 ()~ -4+) } e
where the states {|Sm_)} are orthonormal and they all satisfy

S’|Smy = A°S (S + 1) |Sm.) S=1,0

S:Isms> = ﬁmslsms> ms = ]’ 0’ -1

[CHAP. 14

{14.4.9)

(14.4.10)

(14.4.11)

(14.4.12)

(d) The symmetry properties of applying the interchange m, <> m, to the [Sm ) states follow from the expressions
in (14.4.1). By direct observation of these equations we can see that the § = 1 (triplet) states are not affected

by the interchange operation, whereas the § = 0 (singlet) state changes its sign. That 1s,

fﬁ (triplet)
P (singlet)

triplet

—singlet

where P |m m,) =|m,m,) is the interchange operator.

(14.4.13)

Note: The expressions of (14.4./3) are in accordance with the result (/4.3.12), where one only needs to replace

2j—>1andJ—s =01

Let S = §, + S, be the total angular momentum of two spin 1/2 particles (S, = §, = 1/2). Calculate
the Clebsch—Gordan coefficients (mlm2|Sm ) by successive applicationsof S, = §_+i§ , on the vec-

tors |Sm ). Work separately in the two subspaces S =1 and § = 0.

In order to find the Clebsch—Gordan coefficients for the addition of spin §;, = §, = 1/2, we shall use the

following relations [see Egs. (/4.12) in the Summary of Theory):

I S,ISm) =4 JS(S+1) —m_(mx1)|S, m+1)

]

| S,, Imymy) ﬁ,\/S‘l(Sﬁ-l)—ml(mli'l)lmlil,mz)

ml Sy4 lmymy)

A8, (S, + 1) —my (my21)Imy, my%1)

We shall also use the phase condition
IS=5,+8,, m=%(§,+S))y=|m=% 8§, m=%8)

(14.5.1)

(14.52)

Note: The states |S =S, +8,,m = £(§,+5,)) are cigenstates of s’ and S,, with nondegenerate eigenvalues

A, = th (S, +38,), respectively (see Problem 14.2). Therefore,

IS=8,+S,m =2(5,+5)) = €’lm, =+ S, m=%85)

and the phase ¢ may be chosenas ¢ = 0.

i.  Subspace § = 1: From (/4.5.2) we immediately have

11
L 1) =13,3) = ++)

{14.5.3)
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Then, operating with § = §, + S,  on both sides of (/4.5.3) and using (/4.5.7). we obtain

js,u,n = A fT(T+1) —TC(L=D)|1, 00 = A/2]1,0)

1 . 1o (14.5.4)
SILD = (5, +5:)15.5) = #11-5,3) + 5115, -3)
Thus,
]
11,0 = J_(|2’ 2>+| 3 2)) A/‘(l*’)""'@) (14.5.5)
Similarly, operating with §_ once again on the state |1, 0) , we find
SIL0Y =21 (1+1)-0(0=D[1,=1) = &2)1,-1)
I ) o1 1] )
S“ 0) - ﬁs|,(|2’ 2>+| 27 2) 2SQ>(|2’_2>+|’§a 2> (1456)
| 2 |
(I ,.)+I 3 :)\=—,-!—l,—:)
J2\ 2z 2 272
Therefore, in accordance with condition (74.5.2),
1 1
“a_‘l> = |’§"§> = |"> (,457)
ii. Subspace $ =0: Since m, = m +m, (inthis case m_ = 0), we have
11 11
0,0) = al3,-3)+Bl-3. ) (14.5.8)
Next, due to the orthonormality of [Sm,) basis we get
1
(1,0]0,0) =0 — TZ(OH-B) =0 - Pp=-0
(0,000,00=1 > Ja’+p =1 5 2o’=1 5> a=1//2
Therefore, we find
_ L(l ool )
0,0y = 7 3. =57 =13, 3) (14.59)

14.6. LetS = S, + S, be the total angular momentum of two spin 1 particles. (@) Represent the vectors {Sm )
as linear combinations of |S,m ) ® |S,m,) = |m,)|m.) in the subspace § = 2. (b) Repeat part (a), working
in the subspace § = 1. (¢) Repeat part (@), working in the subspace § = 0.
(@) ForS$=2,m = 2(m =m +m,), weimmediately have

2,2) = i) (14.6.1)
Applying S = §, +35,. to both sides of (/4.6.1) we find

S22 =2 202+ 1) -212-H12, 1)

S = AT T (1)« [1)10)) (1462)
Thus,
2.1) = 5 4OV + 110 (14.6.3)
Applying §. = §,.+ S, once more to both sides of (/4.6.3) we obtain
SI2,1) = 222+ 1|2, 0)
(14.6.4)

1 t
ES,(|0>I1>+I1)IO>) = ﬁ[ﬁ(l—l)ll>+I0>I0>+I0)I0)+I1>|—1))l
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Hence,
1
2,00 = —=[I=-D|1) + 2|00} + |1)}-1 14.6.5
2,0 Jé“ 1)+ 210)0) + [1H-1)] ( )
Similarly, we obtain
]
2,-1) = —&= -1) + |-1}[0 14.6.6
2, -1) ﬁ(|0>| y+ D10 ( )
and finally,
2,-2) = =D (14.6.7)
Note: One can, obviously, take (/4.6.7) as a starting point and calculate the state |2, 1) “up the ladder” with
the help of the operator §, = S, +5,,.
(b) For § =1 the state |1, 1) can be written as
(1, 1) = a|1)0) + BIOYI 1) (14.6.8)
where the constants ¢ and 8 are determined by orthonormality. Thus,
1
(2,11, 1) =0 - Z(a+P) =0 —» f=-a
V& (14.69)
(L1, D=1 - o’ +B°=1 - 2la’=1
which leads to
]
L 1y = —= (Do) - 1011 14.6.10
I, 1) ﬁ(l)l>l>l>) ( )
Now,
SIL 1 =A/1(14+1)1,0)
1 3 14.6.11
=S (1DI0)+ 1001 = —= V2 (10)105 + [1DI-1) = 10)10) ~ -1I1)) (14640
L /2 N2
so that
1
L0y = =D - -1 14.6.12
11, 0) ﬁ(l>l)l>l>) ( )
Repeating the process once again we obtain
1
1,-1) = = (-1DI0) - {0)-1 14.6.13
1.-1) ﬁ(l )10} = {0)=1)) ( )
(¢) The subspace § = 0 contains only one state that can be written as
0}10) = Y1113 + 3]-1)I1) + p|0)|0} (14.6.14)
where v, 8, and p are arrived at from orthonormality conditions:
(2,010,0) = 0|
1 ] 1
(1,0]0,0) =0 ¢ = v= —, 5=-—, = — 14.6.15
Y 3 A p A { )
{0,0/0,0) =1
Therefore,
1
0,0y = —= ({1)|-1) = |0}0) + |-1)|1 14.6.16
10, 0) ﬁ(HI 7= 10310) + =11 ( )
Note: The states § = 0, 2 are symmetric under the exchange of particles, whereas in § = 1 they are
antisymmetric.
14.7. A system of two angular momenta, of respective magnitudes j, = 1 and j, = 2, is described by the

basis | j, = 1, m,} ®|j,= 3 m,). The system is in a state /M), where J is the total angular momentum

and M is the z-component of J. Consider, in particular, the states (@) |J =

> M= %} and (b)
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1
|J = 3 M= 5). For each state calculate the probability of measuring each pair of possible values
{(m,, my), and find the expectation values of J,_ and J, . (¢) Calculate the expectation value of J in the
state J = 3 M =z

—

(a) The possible values for (m,, m,) are

j] =
1 1 (14.7.1)

DV IS SR N
J - 2 -3 _25 2’ _2’ "2
1 y 1 (14.7.2)
J = 2 had =% ——i
. 3 3
In particular, for | J = 3 M= §> we have
3 1
I=3M 2> =Lm=0j=5m=3) (14.7.3)
Therefore,
3 2
prob(m =1l,m,= ‘(m,_1 m2—1/2|1—— =3 =1
1 (14.74)
prob(mlvtl or m2¢§) =0
The expectation values of J,, and J,, are given by
(M) |IM) = hm,
7.
(MU | IM) = hom, (14.73)
1
Hence, for m, = 1, m, =5, we find
(J,) =1, {(J,p=h/2 (14.7.6)

1 1 . . .
(b) First, let us write the state | J = > M= §> as a linear combination of |m, m,) states. Starting from (/4.7.3)
we find

PRERWENN - cory R IRV

11
1]_|m1=1, m2=%)=ﬁ,./1(1+1)|m,=0, m, = )+h (1+l)+§ 2 Imy =1, mz-—§>

i
5 2> [lml_o m, = 2)+J’|m|— =3 {14.7.8)

Consequently, due to orthogonality,

(14.7.7)

Thus,

|
.
3
~
I
|
I
~

1 1 1 1 2 1
|J=§, M=§> = §|m1=0, m2=§)~ j'm1=l’ m2=_§> (14.7.9)
Hence,
1 1 1.]2 1
prob m|=03 m2=§ = <m1=0, m2=1/2|1=§,M=§> =§
1 . e o2 (14.7.10)
prob{ m, = 1, m=-5|= {m =1, m2=—1/2|J=§,M=§> =3
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where for all the other pairs P(m,, m,) = 0. The expectation values of J,_ and J, in the state

|J=5 M= %) are given by expressions (14.7.5) and (14.7.10). Indeed, substituting (/4.7.9) in (/14.7.5) we

1 2 2
(10 = 3(m =0 h+3(m =1k = 3k

1 (14.7.11)

1 1), 2 1 1
(Jy) = M =3 ity m, = -5 ho=—gh
(c) The operator J, can be written as
1
Jo=5;,0,-7) (14.7.12)

Therefore,

A
UM JIMY = S UMI(TT+ D) =M (M+ D) J, M+ 1)+ ST+ T-MM-1|J, M=1)=0 (14.7.13)

1 1
Alternatively, for | J = 3 M= §> we can choose the well-known spin 1/2 representation (see Chapter 7):

0 ﬁO—i

1 1 L 1 1
I’J" iv M= i) = 0 |J= 55 M=_§> = 1 J.‘. = 21 i 0 (14714)
This leads to the following expression
al 0= 1
(Jypy = (10)3 iollol= 0 (14.7.15)

14.8. Consider a system of two spin 1/2 particles whose orbital variables are ignored. The Hamiltonian of
the system is / = ¢,0,.+¢€,0,., where € and ¢, are real constants, and G, _, G,_ are the projections

A A
of the spins S, = 50, and S, = 50, of the two particles onto the z-axis. (a) The initial state of the

1
system, at r =0, is W (0)) = 72 (I+-) + |-+)). §° = (§,+8,) ® is measured at time 7. What are the
values that can be arrived at and what are their probabilities? (b) If the initial state of the system is arbi-

. . . . 2
trary, what Bohr frequencies might appear in the evolution of ($7)? (¢) Answer parts (a) and (b) for
Sx = Slx + SZ;(
(a) The eigenstates of S’= (S, + Sz) (and §.) are the |Sm ) states where S = 1, 0 correspond to the triplet and
singlet states, respectively. The results of the measurement of S’ are, therefore,

I {s =1 —28
11 §=0-0
However, the states |Sm) are not eigenstates of the Hamiltonian and consequently the probabilities

prob (S = 1) and prob (S = 0) are changed as a function of time. The stationary states of the system are

1 1
Im, =15, my=15) = {l+4), [+-), |-+ [--)} (14.8.2)

(14.8.1)

and its energy levels are given by
H|-) = (€,0,.4+€,0, )}|-) = (* € tE))|-) (14.8.3)

Therefore, taking into account the initial state of the system,

1
v (0)) = 5 (F2+1-)=18=1m=0 (14.8.4)
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we find
v (n) = :/1—:_2{ exp—i€, — E,t/fil+ - Y+ expie, — gyt /R -+) } (14.8.5)

Now, writing the states of (/4.8.5) in the form

1
'+'> = 7‘7' (“’ 0)+|09 0))

| (14.8.6)
-+ = — (|1,0)-10,0
-+) 7 (11, 0y =10, 0)
and substituting (/4.8.6) in (/4.8.5), we obtain
(€, -€5)1 (B -y
vy = cos-_ﬁ'—ll,o) - isin— |0, 0) (14.8.7)
Hence, the probabilities prob (S = 1)and prob (§ = 0) are
(e, —€ey)t
I prob (S = 1) =‘ V (S=l.,m|\y(t))’2 = cos?———
L * n
m =10, (14.8.8)
(€, —€,)1
I prob (S =0) = [(§=0,m= 0]y ()| = sin———2=
Moreover, the expectation value of S is
(w(t)’Szyw(r)) =24 prob (5§ =1) + 0 prob (S = 0)
= 2h7cos? [ (&, — &) t/h] = K[ 1 + cos (wyr)] (14.8.9)

where ®, = 2(g,—¢€,)t/# is the Bohr frequency. Note that expressions (/4.8.6) and (/4.8.7) contain linear
combinations of the [Sm ) states with m, = 0. Indeed, from (/4.8 3) and (14.8.4) we find that the operator
S, = §.+5,. commutes with the Hamittonian and S.[y (0)) = 0. Thus,

v (1) = C, (N 1,00+ C, (1[0, 0) (14.8.10)
where €, (1) and C, (/) are time-dependent (complex} coefficients. As a result we also have

prob(S=1) = (S=1,m= 0|w(r)>]3 = |C, (1]

14.8.11
prob(S =0) = ’(S=0, m = O‘W(!))‘2 = |C,(0)? ( J

where the sum in (/4.8.81) is reduced to a single term (m, = 0).
(b) We consider an arbitrary initial state of the form

(D)) = al++) + Bl+-) + y-+) + d--) (14.8.12)
where 0, B, ¥, and 8 are complex constants. In this case the evolution of |y (#)) is given by
|\|-’ (()) = ae—i(el +ea)esh ’++> + Be-:(el —E,) 1/ |+_> + ye"e' ~€a) 1/ h |_+) n 5"[(51 +Ey) 8/ h |__) (14.8.]3)

Using expression (/4.8.6), we then find

1(E, +E,) 1/ h

w(n = oe ETE TN 4 Be 11, -1
+% (Be_i(E'_Ez)’/h +ye CE 7y 1 0)
7‘; (Be T g aeihy g g (14.8.14)
Therefore, the expectation value of 8% is
wnlsly ) = 2#{@2 #1874 5 (1B + 1) + Re[B*Yc’z"E""?’”"J} (14.8.15)

Clearly, (S2) is characterized by a single Bohr frequency that is identical to the one of part (@) and equals
W, = 2(g,-¢,) /.
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Note: For e = 8 = 0 and B = ¥ = /2, expression (/4.8.15) is reduced to

2 2 2 (81 - 82)
(w(r)iS’\y(r)) =#"| 1+ cos — ! (14.8.16)
which coincides with (14.8.9).
(¢} To find the expectation value of S, we return to (/4.8.13) and calculate the ket (S|, + S,,) [y (£} ). This gives
h
SJWU)) - 5{ [aeﬂ(eluz):/ﬁ + Sel(slu:z)l/fz] (|+ _) + | _+>)
B CTI Ay TR (e 4 - ) ) (14.8.17)

Therefore,

fi , - - “2igqi/k
<W({) |S1‘w(()> — 5 {(X*Be?.:elr/fz + a*’Yezlill/ﬁ + S*Be_zlsll/h + S*Ye 1&gl

~2ieqt/h 2; —2i€ 1/ 2uey /A
+ B(x*e i€y + B*SF i€ t/h +’Y*(I€ 2ie 1/ +’Y*8€

= A Re{ (0B +y*8) & & (ary+ P*8) 417} (14.8.18)

In this case, the Bohr frequencies that appear in the evolution of (S,) are g, = 2&,/# and w,, = 2¢,/4,

14.9. The total angular momentum of a spin 1/2 particleis J = L + 8, where L is the orbital momentum and
S 1s the spin (I is an integer, § = 1/2). Let |/, m,)2®|S =1/2,m)=Im,m) be the eigenstates of
{ L s’ ,L,S.} and /M) the eigenstates of {J,J.}. Find the Clebsch—Gordan coefficients
(m. m(|JM) by successive applications of J, = L, + S, to the vectors /M). Work separately in the
twosubspaces J = I+ 1/2 andJ = [-1/2,

First we notice that if / = 0 the vectors |m, =0, m =*1/2) are eigenstates of {Jz, J.}. In this case
J=585=1/2 and M =m_==%1,2. Therefore,

V=1/2M=1/2)=|m=0,m =+1/2)=|m=0,2) (14.9.1)

11 11
The only nonzero Clebsch-Gordan coefficients are then (0, +|3,3) = (0, |5, —§> = 1. On the other hand, for
1 #0, there are two possibilities:

D S S | ( l]

I Ju1+2 M-l+2,1—2. , l+2
| 3 | (14.9.2)

II J=I—§ M—l—i,f R (1——)

. 1
In this case (! #0), we will consider the subspaces J = {+ % and J = 1—5 separately, and show that

Crehan - =] / ]

I |_]_1+2,M)ﬁA/m l+M+2|m M- +>+ 1—M+2|m M+ )
| ) A/—l | 0 1 (14.9.3)

I “=1"§'M>=m[ ’+M+§'m=M+§">+W-M+§'m=M‘§s+>J

where |m, my=|m, ) and M = m +m

]
3

I+
b —

. 1 1 . . . . .
L J=1+ 3" The subspace J = [+ 5 contains a multiple of 2/ + 1 independent eigenfunctions. As usual (see
. . 1,
Problem 13.2), the maximal eigenvalue, M, = I+ 5 18 nondegenerate. Therefore,

1
IJ—1+§, =!+%)=|m=l.+) (14.9.4)
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Now, applying the operator J = L +§_ to relation (/4.9.4), we get

1 1 1 I8 1 1
JJ_|1+§,I+§) = hJ I+ M) (J—M+1)|l+§,[—§) = AJ2I+ 1 ll+§,(—§)

| (14.9.5)
|l +) = (L o+ S)+) = R(J20= 1,4 +115)
Thus, in accordance with (/4.9.31), we obtain
1 1 1
J= M=1-2) = I, - 9.
|J=1435.M=1-3) m[ﬁn ++ 10, 5] (14.9.6)
Expression (/4.9.6) can be generalized by recurrence. In general,
1 1
| J|l+ M)—ﬁJ(I+M+§J(! M+ )|l+ M-1)
1 1 3 1
. J_|M—§,+)=fz I+M+§ /- M+§ IM—2,+)+ﬁ|M— .Y (14.9.7)
1
st s =n e o=ty
N 2 A\ PAEAN 2/ 2

Therefore, the applicationof J_ = L_+ 8§ to both sides of (/4.9.31) leads to

1 s e ) d)

l+5,M-1) = M- =
" ) 2+l J(l M )(l M 3) "
+M+s )\ 1-M+5

27
I+M+1(I+I—M+t)
2 2

e

NS

+h J
= 7l+ [+M +)+f M+—|M—i, } (14.9.8)

Indeed, the resulting expression (/4.9.8) is identical to (/4.9.31), where M is changed to M - 1.

1
J = 1»—§:Thestate l.lzl—i,M

+

I
3\'M*§"
5

)

M
i

I\)l—

1 . L
=1/- —) 1s a linear combination of |/, -} and |/ - 1, +). Note that this is the

only possible way to obtain m, +m, = /- 2, as in (/4.9.6). Thus,

V=1I- 2, =r-%) = ali- 1, +) + Bl -) (14.9.9)

This state must be orthogonal to (/4.9.6). Therefore,
J20 !

*= A B=F5

4

Namely,
1 1 1
V=1 3 M= 1_5) = N [F20)L == 1, +)] (14.9.10)

Now, we can apply J_ = L +S_ to (/4.9.10) and find all the other coefficients. A calculation similar to that
of J = I+ /2 yields

1 1 1 1 / [ 3 }
f-5M-1) = 2z+1[ [+ -3 M =5+ i~ M-5M-5+) (14.9.11)

The last expression is identical to (/4.9.311), where M 1s changed into M - 1.

14.10. Two spin 1/2 particles (whose orbital variables are ignored) are described by an unperturbed Hamil-
tonian H, = A (0, + 0,.). We add the perturbation H = ¢(06 0, +06.0,), where ¢ =
(0, o,, G,) are Pauli matrices, and € « A are positive constants. (a) Find the eigenvalues and eigen-
functions of H,,. (b) Calculate (exactly) the energy levels and the corresponding eigenfunctions of the
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total Hamiltonian H, + H,. (¢) Using the perturbation theory, calculate the first-order corrections to
the energy levels of H,. Compare them to the exact results of part (b).

1 1
(@) The two spin 1/2 particles are described by the standard basis i1, = 13, ay = i§> = {{++) |+ % 40, 0}
2 '
Since H,, = _EA (5,.+85,.), we find
Hl++) = “2A++)
Hyl+-) = HJ-+) = 0 (14.10.1)
Hyl-) = 24|-)
Thus, the eigenvalues of H, are =24, 0, and 2A.
(b) The total Hamiltonian H, + f{, can be written as
£
H =-A(0,.+0,) +51(0, +0a,) i of ~ oi -20,.0,.] (14.10.2)

Clearly, H commutes with the operators {ST, S;, s, S.}.where S = §, +8, is the total spin of the particles.
Therefore, the eigenstates of the total Hamiltonian are the following triplet and singlet states:

1, 1) = |++)
|
I 1,0) = z(l+—)+l-+>)
I, =1) = |- (14.10.3}
I
1 10,0 = 5 ()= 1-+)

The cortesponding energy levels are, then,

H|L, 1) = (=2A +4e-3e—¢g)|1, 1) = =24|1, I
H|1,0) = (0+4e-3e+¢€)|1,0) = 2¢ll, 0) (14.10.4)
H|l, -1) = (2A +4e-3e-¢g)[l,-1) = 24|L,-1)
and
H|0,0) = (0+0-3g+€)[0,0) = -2¢(0, 0) (14.10.5)

€
(c) The matrix elements of H, = 5(0,,0,.+0C, Cy,) in the unperturbed basis { |++), |+-), [-+), |--}} are given
by the following matrix:

4 ) ) 9
++ (0 0 0 o)
[+ | O 0 2 0 (14.10.6)
[-+) 0 2e 0 0
- 0 0 0
The unperturbed energy levels are £, = 24, ¢, =¢,=0, and g, = 2A. Therefore,

{Afsl = (++|H |+4) = 0
14.10.
Ag, = (--|H\|--) = 0 ( 7)

where £, and €, are the nondegenerate energy levels. As for the degenerate zero eigenvalue, we consider the
determinant

A 2e

ae | =M -4 (14.10.8)

det(H, - Al = I

Thus,
Ag, ; = $2¢ (14.10.9)
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Equations (/4.10.7) and (14.10.9) lead to
E, =g +Ag =-24
E,; =8, ;+Ag, ; = £2¢ (14.10.10)
£, = ¢, +a¢, = 24

which agrees with the exact result of part (b).

14.11. The motion of an electron in gl central field of force is described by a Hamiltonian of the form

where H = 2p_m +V(ryand H_, = { (r)L - S.The spin-orbit coupling leads to energy
differences between levels with ghe same values of L2 and S2 but different values of JZ, where
J = L+8. (a) Show that [H,L"] = [H,S] = 0 but [H,L]#0 and [H, S,] #0. (b) Show that

[H, Jz] = [H,J,] = 0.(c)Consider the stationary states of H that are also eigenstates of the observ-

H=H,+H

$0°

2,2 2 P . .
ables {L°, S7,J ", J_} . Express the angular part of these eigenfunctions in terms of spherical harmonics
and two-component spinors. (d) Let the eigenfunctions of part (¢) be characterized by the quantum num-

. : 2 2 . .
bers {, J, and M (which are related to the eigenvalues of L., J', and J_, respectively). Determine the

possible values of L_and S, and find their probabilities and average values.

(@) The Hamiltonian H, commutes with all the components of L and 8, and the operator L acts only on the angular
variables (0, ¢) (see Chapter 6). Therefore,

[H,L'] = [Hy+{(nL-S,L°] = {(n[L-S,L’ (14.11.1)

In addition, [ S, L}] = 0 and [L, L2] = 0 for all the components i,j = x, ¥,z = 1,2, 3. Thus,
2 R 2 2
(HA,L7] =GC(n Q2 (L, L]S+L[S,L]) =0 (14.11.2)
i=1

Similarly, by changing the roles of L and 8 in (/4.11.2), we obtain
3
(1,87 = L) ) (1L, $18,+ 1,18, ') = 0 (14.11.3)
L=1

Furthermore, using the relations [L,, L;] = ifg ,L,, we obtain

[H.L.) = [Hy+C(HL-8, L] = {(r) [L,S,+L,S +LS,L.]
= {(r) (Lo LS, +5(r) [L, LS, = iRL(r) (-L,S +LS) #0 (14.11.4)
and finally,
[H, 8] =L LIS, S +0(nL [S.8]) =ihl(r) (LS +L.S)=0 (14.115)
(5) From (/4.11.4)and (14.11.5), we immediately find
[H,J) = [H L +5] =0 (14.11.6)
Morcover,
(H,J9 = (H (L+$°] = [H,L’+§ +2L-8] = 2[H.L-§]

2[Hy+{(ryL-S,L.8] = [H,L-S] +2{(r)[L-S,L-8] =0 (14.11.7)

(c) The results of parts (a) and (b) imply that one can find the basis of states |n/, S, J, M) = R, (r) UM}, which
is made up of the simultaneous eigenfunctions of the mutually commuting observables {f, L% 851, J.}.
The angular part of these eigenfunctions, |JM), had already been worked out in Problem 14.10, where we
found the following expressions:

l |J—[+2,M>— 7 0 [+M+ M_ ’+)_ [_M+ |M+ !->
II |J_ — 'M>_ l + -+ | + ‘->_ — + | —_ ,+)

(14.11.8)
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|
The states IM_Z, +)=|M %) on the right side of (/4./1.8) denote the product-basis eigenstates

[lm) ®|S = 1/2, =) for an electron of an orbital angular momentum / and spin § = 1/2. In the coordinate rep-

resentation, (r(r, 8, 9) |im) = V (8, 6) . where Y;"(& &) are the spherical harmonic functions (see Chapter
6). Therefore,
1+M+; M-1/2 M 172
+1/2
I V=i+5.M) = J=5r77 Y (0.0 1+)+ (6,0)1-)
14.11.9)
1 1+M+% yMe12 M=172 (
+ _
N |W=t+5m = |57 PO o+ n e om
where —J <M <J. By construction, the angular wave functions in (/4.71.8) or (/4.11.9) satisfy
{JZIJM) = B+ 1) UM
JUM) = AMUM)
14.11.10
I {LzLIM) = 11+ 1) UM ( )
STUM) = K5 (3/4) UM
Consequently,
1 2 2 2 woo
L-SUM) = 50" -L"-S§ yWUM) = S UG+ -1+ 1) -3/4]UM) (14.11.11)

The operator L, can assume the values fim, where m is an integer and —I < m <I. The operator S, can assume

the values +# /2 where + corresponds to up/down spin states. The probabilities of these values are determined
by the (‘Iehqrh—Gnrdan coefficients of (/4./1.8), and depend on the state of the system.

1
i. In the state |[J = 1+ , M) we find

1 ) I+M+1/2
I Pf°b('"°M‘iv+ = "2+ 1
1 pmb(”’ ‘M"i") 20+ 1

where M| <1+ 1/2. If M = [+ 1/2, then prob{m = I, +) = 1,and all the other combinations have zero
probability. The expectation value of L. is

p
oo o) (e s ]

Similarly, the average value of S. is

T (14.01.13)

b2

|
i

+
r

] 1_h( 1)1( 1)(1) h_2M
(S = (I + 5 MIS ) +3,M)= 2,+1|: T+M+35) 5+ 1-M+5 | 5 ]=221+1 (14.11.14)
i [nthestatel.l—l—i,M) we find
_ 1 )_1+M+1/2
I P“’b(’""”‘z*‘ = T
1 I-M+1/2 (14.11.15)
II Pfob("' M=3+ )=21—+1

where |m| <1~ (1/2). The expectation values of L and S_ in this state are, then,
1 1
I Ly = <1—§,M|L_,Il—§.m = hM

| (14.11.16)

I ﬁ
U= MISH=3.M = 53747

11 (S
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14.12. The spin-orbit interaction for the electron in a hydrogen-like atom is givenby H,, = { (r) L - S, where

1 14V (»
C(r) = . 2(— df* ) ) and V(r) = ~Ze sy, (a) Derive an equation for the energy levels of such
mec

atoms in terms of the quantum numbers / and J. (b) Show that the spin-orbit correction to the unperturbed

energy levels is proportional to z

(a) The complete Hamiltonian of our problem is H = Hy,+ H_, where
p’ . 1 az I
H, = 2— +V(r) = 2m 3, 4 2m E ,0) + V() (14.12.1)

and f{__ is treated as a small perturbation. For convemence we take the unperturbed wave functions of H, to
be the simultaneous eigenfunctions of { L, S' J J.}, where J=L + 8. Thus,

HoR, (rYWM) = ELRY, () UM) (14.12.2)

where RD ; (r) are the radial wave functions of H, and EO are the corresponding energy levels (see Chapter

8). The th\ IIM\ in(14.12.2) represent the angular part of (I—m wave functions of H[)’ including the piﬂ states.
In this representation [see (/4.11.7), (14.11.8), and (14.11.10)] and for ! # 0, we have
(r)
HoR, (1) UM = Q DS g0 oy (g4 1) — 11+ 1) =374 | UMD (14.12.3)

where J =1+ 1/2 and M| <J. Expression (14.12.3) shows that the perturbation /  is already diagonal in
the subspace {n, / = J + 1/2}, which corresponds to a degenerate energy level Ezl. Using the first-order per-
turbation theory we therefore find

E(n L gy = Eo+ {nl, IM|H_|nl, IM) (14.12.4)
where (r|nl) = R", (r) . Defining the integral over the radial functions to be
L, = (nlll (ryinl) = J.rzRg,* (N ()R (rydr (14.12.5)
and using expression (/4./2.3) we obtain
hl
E(n 14y = Ey+ 50, [T (J+1) ~1(1+1)~3/4] (14.12.6)
Since J = [ + 1 /2, we can distinguish between two cases:
{E,?, N ) J=1+1/2
E(n 14y = ) 14.12.7
(n54) Ey+ L (+)/2  I=1-172 ( )

Each of these energy levels is (2J + 1) degenerate. The degeneracy can be removed by a magnetic field (see
Drnhlpm 14 11\

UV A,

(b) The flrst-order energy correction due to spin-orbit interaction is proportional to the radial integral £ ,. For

120, we have
1 14V 1 1dV( Ze
£ = (1 0 = et g (-2

2 2,2

Zo'h
(nllr Ity = Zmzez(nllf"’InD (14.12.8)

2.2
2Zm;c

Detailed calculation of (r_l),,, yields (see Chapter 8)

-3 AN 1
(nilr "|nl) = kaj Id+1/2y I+ D (14.12.9)

where a, = ﬁz/Zezm, is the Bohr radius. Therefore,

(Ze) m, 1
L 31(1+1/2) (I'+ 1)

(14.12.10;

ni
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14.14.
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A hydrogen-like atom is placed in a weak magnetic field B = BZ, where the interaction is described by
the Zeeman Hamiltonian, H' = W B (L_+ 25)) /#. (a) Assume that in the absence of B, the wave func-

tions of the atom are eigenfunctions of LZ, Sz, Jz, and J_, where J = L + 8. Use the first-order
perturbation theory to calculate the energy splittings due to the magnetic field. (») The electron of such
an atom is excited to a p-state. Into how many components does each of the levels split when a weak
magnetic field is applied?

(a) The perturbing Zeeman Harniltonian can be written in the following form:
MgB (L. +25) pgB(J.+S))
= # - P
where |y is the Bohr magneton. The energy levels, E = E(n,1,J) + AE, of the complete Hamiltonian
H=H,+H_+H' arethen given by

(14.13.1)

1 1
AE = p.BB(J—Iiz,Ml(J +SIU=1t35M) = uHB[M+(J—1i§,M|S|J-li§,M)] (14.13.2)

The matrix element of S. was already calculated in Problem 14.11. Combining the appropriate results in Equa-
tions (/4.11.12) and (/4.11.14), we find

AM
M) = +57— (14.13.3)

Hence,

1
AE = uHB[l + m} (14.13.4)

(b) Inthe absence of a magnetic field there are two degenerate energy levels, which are specified by the quantum
numbers (I = 1, J = 1/2), respectively [see ({4./2.7}]. When the magnetic field B is applied, the degeneracy is
removed. TheJ = 3/2 level is split into four components since M = -3/2,-1/2,+1/2, +3/2. Similarly, the
J = 1/2 level is spiit into two components corresponding to M = ~1/2, +1/2. The energy changes are given
by (14.13.4). Thus,

AE(LTY = gL YyugBM (14.13.5)

1
gL,y = |:l + (2“_1)} (14.13.6)

where g 1s the Lande factor. In particular, g (1,3/2) =4/3, and g(1,1/2) =2/3.

Supplementary Problems

Show that the Clebsch—Gordan coefficients satisfy the following recurrence relations:
JTT+1) - = G+ 1) —m (m 21 (my 1, my|[IM)
i Uy + 1) —my (my 1) {myy my— 1T M) (14.14.1)

Consider a deuterium atom composed of a nucleus of spin / = 1 and an electron. The electronic angular momen-
tumis J = L + 8, where L 15 the orbital angutar momentum of the electron and 8§ is lts spin. The total angular
momentum of the atom is F = J + I, where I 1s the nuclear spin. The eigenvalues of J and F° are J(J+1) #

and F (F + 1), respectively. (a) What are the possible values of the quantum numbers J and F for a deuterium
atom in the s srr()und state? (b) Answer the same question in the ?n excited state. (cy What are the possible values

of the quantum numbers J and ¥ for a hydrogen atom in the 2p level? The hydrogen atom’s nucleus is a proton of
spinl = 1/2.

Ans. (a)J=1/2,F=1/2, 3/2.
o1 if J=1/2,F=1/2,3/2, 1 if J=3/2, F=1/2,3/2,5/2.

@1 f J=1/2,F=0,1; I if J=3/2, F=1,2.
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14.16. Let § = S, + 8, + S, be the total spin of three independent spin 1/2 particles, and let |m,m,m) be the common
eigenstates of Sl " S2 »and §;, (there are 2°=8 states). (@) What are the possible values of the total spin? (b} Find
a basis of eigenstates common to §* and §..in terms of the |, m,m;,). Hint: First consider the addition of two spins,
then add the results to the third spin. (¢) Do the operators §” and §. form a complete basis?

Ans. (a) 1/2,3/2. (b) |%, %) f(|+ +>f|~++> A[l++> [(H H+] ++>)
5P = HL-14+) = (e 3er-09)- 0, B = e,
|%, %) = %(|++-)+|+-+>+|-++)), é,—%) = %(I+-->+I-+->+I--+>), |§. —%’) = |--9.

1 1
(¢) No, since the states |§’ + §> do not have a unique decomposition in |m,m,m,) basis.



Chapter 15

Scattering Theory

15.1 CROSS SECTION
Consider the typical scattering problem depicted in Fig. 15-1.

P

ey

E.:.-f.m_;?”* ~a

A P

£ .
e

s

Fig. 15-1

A beam of particles scatters from the potential V (r) with coordinate origin at point 0. We define the dif-
ferential cross section do/dQ as the ratio of the number of scattered particles dn(8, 9) per unit time within
the solid angle dQ divided by the incident particle flux £

do _ dn(6,9)

dQ ~ FdQ
where dc/d€2 has dimension of a surface. We assume:
1. Any interaction between the scattered particles themselves is neglected.
2. Possible multiple scattering processes are neglected. A multiple scattering process is a process in which a
scattered particle can be scattered multiple times in the same target range.
3. The incident beam width is much larger than a typical range of the scattering potential, so that the particle
will have a well-defined momentum.

The total cross section is obtained by integrating over d):

(15.1)

or = | 75 4@ (15.2)

When the scattering is from a potential, say, V (r), the differential cross section is the same in the Lab and
center-of-mass (CM) frames:
do Lab dag YCM
(d_Q) = (Eiﬁ) (15.3)

However, if we consider electric scattering of particle 1 from particle 2, then the differential cross section in the
two frames will be different, and is given by

256
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(d_c)Lab_ (1+72+2y cosB)”Td_o)CM
dQ |1 +7v cos8| dQ

where 6 in the scattering angle in the CM frame and y = m,/m, .

(15.4)

15.2 STATIONARY SCATTERING STATES

Consider a scattering problem relating to particles with mass p. (in this section we use the reduced mass p
and not the standard mass m) and well-defined momentum p = fik, which scatters from a time-independent
potential V = V (r). The Hamiltonian of the system is

H = H,+V(r) (15.5)

where H,, is the free Hamiltonian, H, = f2k2/2u. The wave function for a scattered particle with energy
E > 0 is obtained by solving the stationary Schrédinger equation:

[VZ+k2-U(r)]o(r) =0 (15.6)

2UE 2
k = /%— Ury = ﬁ—'zl\/(r) (15.7)

For a collision between two particles, V (1) is the interaction potential between them (r = r; —r,), and E is the
kinetic energy associated with the particle of reduced mass [ in the CM frame.

For a potential V (r) of shorter range than the Coulomb potential [rV (r) — 0 where r — oo ] the solution
of the Schrodinger equation can be writien as a composition of an incident plane wave and a spherical wave of
amplitude f(6, ¢):

Ny eil’r
0(r), . = e +f(8,0)7 (15.8)
The scattering amplitude is given by
] *lk r ‘; Kl k -r
£80) = —zple™ U@ o (rydd k= — (15.9)

The amplitude f, (6, ¢) depends on the potential and the scattering angles 6 and ¢ . This quantity is directly
related to the differential cross section

do (8,
e ATtk (15.10)

15.3 BORN APPROXIMATION

The Born approximation is obtained by treating the potential U (r) as a small perturbation. Equation (/5.9)
then gives

1 .
28,0y = —ﬁje-'q"‘u ()0 (r)dr (15.11)

where ¢ = k.~ Kk; and & ; are the final and initial momentum, respectively. Note that in the Born approxima-
tions the scattermg amplitude f# is proportional to the Fourier transform of the potential U (r) with respect to

g. If the potential has spherical symmetric, U (r) = U(»), (J5.1]) is simplified by taking q as the polar axis

and integrating over d€)'. For this case, we obtam

o 7
2(8) = —%J sin (gr) rV (r)dr (15.12)

where ¢ = 2k sin (8/2) is the momentum transfer and k = |k,| = |k]: see Fig. 15-2
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k;
Fig. 15-2

The Born approximation is valid when either of the two following conditions holds:.

4

I V « na ka<] (15.13)
_ A2
I1 V « [— _7—| ka ka»
Lual

where a is the range of the potential and V is the “averaged” potential defined by

(15.14)

The second condition shows that the Born approximation is always applicable for sufficiently fast (high-energy)
particles. This condition is weaker than the first one; hence, if the potential can be regarded as a perturbation at
low energies, it can always be so regarded at high energies, whereas the converse is not necessarily true.

154 PARTIAL WAVE EXPANSIONS

Consider a potential with spherical symmetry, V(r) = V (r). In this case the stationary wave function
¢, (r, 8) and the scattering amplitude f, (8) can be expanded in terms of Legendre polynomials P, (cos8):

— X, (r)P,(cosB)
0 (r,8) = EA,—,. (15.15)
=0
and
£u(8) = D (21+ 1), P,(cos) (15.16)
=0

where the coefficients A,, f,, and the functions Y, () are to be determined. ¥,(r) satisfies the radial
Schriédinger equation,

d? I(l+1
Lj;ﬂkz—U(r) i )}x,(r) =0 (15.17)
where the boundary conditions are %, (0) = 0. In the asymptotic region r — o=,
1
X, (r), o~ LA, j,(kr) +Bn (kr)]r = §C,. Sin(kr—%l-l»ﬁl.) (15.18)

where j, and n, are the spherical Bessel and Neumann functions, respectively. The parameter 9, is called the
phase shift, since it determines the difference in phase between this solution and the solution of the free radial
Schrédinger equation:

1
AP (1), = 7€, sin( kr- ) (15.19)
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Similarly, we can expand the plane waves in terms of the Legendre polynomials:

oa

eiki = gikrecos® — ZII (20 + l)j,(kr) P,(COSO) (15.20)

1=0
Now, substituting the expansions of e'*?, f, (8), and ¢, (r,0) in (/5.15) we obtain A, = (2/+1) i'e®  and

| .
f,(0) = mz(zn 1) (2%~ 1) P, (cos®) (15.21)
1=0
Thus, the differential cross section is given by
2

do LI ,
ol z 21+ 1) e’ sind, P, (cos0) (15.22)
1=0
and total cross section is
i dn
. )
Op = QItJ.O[f(())l2 sinf df = ﬁz (2/+ 1)sin” §, (15.23)

I=0
From (/5.21) and (15.23) we verify directly that

4r
G, = TIm f, (0)) (15.24)

The last result is called the optical theorem. The phase shifts 5, are completely determined by the asymptotic
form of the radial function ¥, (#). Expansion (/5.23) 1s particularly useful for short-range potential that van-
ishes outside the region » < a. In this case, the partial waves that satisfy the condition / (/ + 1) > ka may be
neglected. Moreover, since the radial wave function R, (r) = x,(r)/r and its derivative are continuous at
the boundary r = a, we have

kj/' (ka) — Y jl (ka)

tand, = kn; (ka) =¥, n, (ka) (15.25)

where 7, is the logarithmic derivative, defined as
1 dR,

1
Y= R [’ =700 | (15.26)

r=a-
For sufficiently weak potential for which the Born approximation holds, all the phase shifts are small and
are given by

2
sind, = §, = —ﬁ—‘;J.V(r)j}(kr) dr (15.27)

15.5 SCATTERING OF IDENTICAL PARTICLES

The case where two identical particles collide requires special consideration. If the total spin of the system
is even, the differential cross section is

do

Ja = |F(0) +f (-6 (15.28)
while if the total spin is odd, the differential cross section is

do

J0 = [F(8) —f(r-8)[2 (15.29)

For example, if s = 1/2, the spin wave function can be in singlet (iotal spin is 0) or triplet (total spin is 1) states.
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For an unpolarized beam of particles with spin s, the system can be in (25 + 1) 2 spin states that are distrib-
uted with equal probabilities. From the total number of possibilities, (2s + 1) spin states are antisymmetric.
Therefore, the differential cross section is

d —iy2s .
(F(; = [f(®)I2+|f(n-6)12+ (2s+)1 2Re [f(B)f"(n-9)] (15.30)

Solved Problems

-ria

15.1. A particle of mass . and momentum p = £k is scattered by the potential V (r) = V,a, where
V,and a > 0 are real constants (Yukawa potential). (@) Using the Born approximation calculate the dif-
ferential cross section. () Obtain the total cross section.

(a) The range of the Yukawa potential is characterized by the distance a. We assume that Va2 « #2/p, so that
the Born approximation is valid for all the values of ka [see (15.13)]. The scattering amplitude is then given by

1 2uV,a e 3
— — b —t r ‘
f(6,9) = Tan 4?2 e - dr (15.1.1)
Since the potential has spherical symmetry V (r) = V (r), we can carry out the integration using the relation

an
J.rze"‘l "Vrydr dQ = ?nJ‘ sin (gryV (r)yr dr (15.1.2)

0
where r = |r| and dQ2 = sin® d0 d¢ . Therefore,

2UV,a ] ' . 2uVea® 2uV,a’ 1
FO) = =g rsin(kn) dr = - T 733 T TR 14 [2ka sin(8/2)]2 (13.1.3)
0

. . . . do
Finally, the differential cross section ol IF (0] is

do () _ 4n?Via® 1

dQ At 1 +4k2a?sin’ (0/2)]°

Note that due to the spherical asymmetry the cross section does not depend on the azimuthal angle.
(b) The total scattering cross section is obtained by integration:

(15.14)

{ do (8) 4n*via®  4g
aa 9= T TTaca

o= (15.1.5)
Note that the infinite range limit (@ — e, V; — 0, and V,a = Z,Z,¢? = constant) of the Yukawa potential
corresponds to the Coulomb interaction between two ions of charges Z,e¢ and Z,e. At this point, (/5./4) is
reduced to the well-known Rutherford formula,

do  4p? ZiZiet VAVZL S

=y - ! (15.1.6)

d 16k%sin" (8/2)  16E2sin"(8/2)

where £ = (A2k?) /2| is the energy of the particles in the CM frame and | is their reduced mass.

15.2. Using the Born approximation, calculate the differential cross section d6/dQ for a central Gaussian

1%
. 0 i . . . .
potential of the form V (r) = —ﬁe"zf 4¢' Compare your result with the differential cross section for
n

Voa
the Yukawa potential V (r) = —r—e—f/".
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15.3.

For the Gaussian potential, in the Born approximation we have

oo oo

2 |' , v, o f
f(0) = ~ﬁ£JOSm(qr)V(r)r dr = ﬁZQJ%rggJO cos (gr) e-r*/4a%dr

2uV, 9 Jan 2UVa’q

where ¢ = 2k sin (8/2). Therefore,
(doj _Awiviet
Gaussian

aQ Fi e (15.2.2)
For the Yukawa potential we found in Problem 15.1 that
( do) 4utviab 1
dQ /v A% L1+ g2a?] 2 (15.2.3)

A

— epn - . PR D76 . T, T iz e A2
‘I'he ditferential cross section o1 {{J.<£.<) and (/0 .£.3) are scnematically piotted In I'1g.12-2 (1In @ units).

do/dQ
1.0
Gaussian
0.8
0.6
0.4

0.2
Yukawa

qa
1 2 3 4 S

Fig. 15-3

Note that for ga « 1 both cross sections coincide and are given by
do 4pn?via®
Froleir T 2qa?) (15.24)

Thus, for a small momentum transfer (i.e., large distance) the specific form of the (short-range) scattering potential
is not important. On the other hand, for large momentum transfer the Gaussian cross section decreases more rapidly
as compared to the Yukawa cross section. This is expected since for short distances the Gaussian potential is much
weaker than the Yukawa potential.

Show that if the scattering potential has a translation invariance property, V (r + R) = V (r), where R
is a constant vector, then the Born approximation scattering vanishes uniess q - R = 2nn, where n is
an integer.

The translation symmetry of the potential, V (r) = V(r + R), implies

je“'q"V(r)d3r - je"q'rV(r-kR)dar (153.7)

By changing variables r — r + R on the right-hand side of (/5. 3.1) we obtain

J.e“q"'V(r)d3r = je—fq-r‘+fq-RV(r')d’r' (153.2)
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Therefore,
je-fq Ry(ry[1-e9 Rjd'r = 0 (15.3.3)

Equation (/5.3.3) holds when either of the following two conditions is satistied

I J.eiq “V(r)dzr =0 (arbitrary q ) (15.3.4)

Il eé4R=15q R =2nn (n is an integer)

The Born scattering amplitude f 8 (q) is proportional to the Fourier transform of the potential V (r). We therefore

conclude that fB(q) vanishes identically, unless the condition (75.3.411) is satisfied. Normally,

Ry = quﬁq,k (k- R =2nn) (15.3.5)
k

Note that the translation symmetry of the scattering potential corresponds to the scattering form of a lattice. For any
vector R of the lattice, the set of vectors Kk that satisfy k- R = 27 constitutes the reciprocal lattice. Therefore,
as aresult of the conditions of (/5.3.411), the scattering amplitude vanishes unless the momentum transfer q is equal
to some vector of the reciprocal lattice. This is precisely the Bragg—Von Laue scattering condition.

154. Using the Born approximation, express the differential cross section for nonrelativistic scattering of an
electron from a spherical symmetric charge distribution p (r) as the product of the cross section for a
point charge g (Rutherford scattering) and the square of a form factor F(k), where k is the momentum
transfer. Evaluate F(k) explicitly for uniform charge distribution of radius R and for a Gaussian charge

Adictribhntinn
UloLItuuLLuvn,

In the Born approximation, the differential cross section is given by

J‘e‘k TV(ryd'r

where p denotes the nonrelativistic electron mass and K is the transferred momentum. By definition, the potential
of the electron due to a symmetric charge distribution V(r)=V(r) can be written as the convolution integral:

V() = - Tffl;')| dr = (Ji:—’)*(g%) (15.4.2)

The first term of the right-hand side of (15.4.2) corresponds to the Coulomb interaction, and leads after regulariza-

tion (see Prohlem 15.11) to the Rutherfard cross section. Therefare
110N (SCC Xrodicm 10, 1) 10 1€ XUINEIorgG Cross seciion. 1 nergiore,

2

do(8)
dQ = amh

(154.1)

do(9) (d_o) ok B
dQ T \dQ/runertora |q]) € P d'r (15.4.3)
F (k)
For a uniform charge distribution of radius R we have
3
g 3 r<R
p(ry = |47k (15.4.4)
o r>0
Thus, we obtain
4 31 # : 3
mf ) k sin (k& 2
Fk) = T(RF]J- rsin (krydr| = [W( 51"](C 9] —~r cos (kr) ):' (15.4.5)
0
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Similarly, for a Gaussian distribution p (r) = TtTZIT}e*’”RZ and we find

o0 2
i 1 . 202
= | map3 | 7 sin(kr)e /R gr
f LA L £y J
0

F (k) = Bﬁe“rifT (15.4.6)

15.5. Consider scattering from a spherical symmetric potential. The solution of the Schridinger equation is

given by the expansion ¢ (r,8) = ZR, (r) P,(cosB), where R(r) is the solution of the radial wave

1=0
equation and P, (cosB8) is the Legendre polynomial of order /. In the limit r — o the asymptotic form
of the wave function is

Lo .
¢ (r,8), .~ e’ +f(B) ek (15.5.1)
where f(8) is the scattering amplitude. Similarly, the asymptotic form of R(r) is
n
sin{ kr—51+3,
R(r), .4 r (15.5.2)

where 3, are phase shifts. (a) Use expressions (/5.5.1) and (/5.5.2) to obtain the Legendre expansion

of f(8) . () Show that the total cross section is given by
4 — L2
Oy = ﬁz (27+ 1) sin” 3, (15.5.3)
I=

(@) The asymptotic form of the wave funciion is given in (/5.5./) and (/5.5.2);

= sm(kr— 51+ 8 ) I
01,0, = I AP, (c050) = ek + 1 f(B) e (15.54)
r=0
Using the Legendre expansion of e,

o0

etki = gikreond z (21 + 1) i'j, (kr) P, (cos®) (15.5.5)
=0
we find that
Fid r / bi \ -
- smLkr~il+5J smLkr-— '2'1+5,J |
ZAI—"‘——IU P,(cosB) 2 Qi+ DY il——— 7 +5.£(8) e’/ | P, (cosB) (15.5.6)
/=0 (=0
where f(8) = ZfrP,(cose). Now we write sinx = 7:, , and obtain
=0 -
i\ kv~ £+ r— nl
I A,e'(ll "2 8’)— (27 + 1) jle’ s I— 2ikf et
, , (155.7)
vy . —Wkr-mz+8, L, .., -fkr-=m3 N
I Age U204 1ile 2=0

Therefore, from (/5.5.7 II) we obtainA, = (2/+ 1) i'e™ and then, by substituting back into (/5.5.71I),

£1O) = Qi1 Y @1+ 1) (¥ - 1) Py (cos6) (1558)

=0
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(b) The total cross section is
2

y (2I+l)(e —- 1) P,(cosB)

‘I;(

1

[ , [d(cose)
o = |If(8)|2dQ = 2n Ve
J J "

1

= zlkzjd(cosﬂ) 2 (2 + 1) 21+ 1) (77 = 1) (™™= 1) P, (cos®) P, (cosB)  (15.5.9)

! Li=0

i
)
Now,j d(cosB) P, (cosB) P,(cos8) = mﬁu,. Therefore,

k,2(21+1)(2-e"“f My = 2(21+l)51n 5, (15.5.10)

15.6. Consider the hard sphere potential of the form

0 o>
V(r) = ]I ’

o0 r < I'U

where kyr, « 1. (a) Assume only s-wave scattering and calculate 8, (k), f(k), d6/dQ, and o .(b)
Write the radial Schrodinger equation for ! = 1, and show that the solution for the p-wave scattering is

Af tha farom
Of aiC 10111

e (1) = A[smk(kr) —cos (kr) + (E)—k(’—) + sin (kr))]

where A and a are constants. (¢) Determine 8, (k) from the condition imposed on ¥, (7). (d) Show

that in the limit £ — 0, 8, (k) ~ (k7)) ? and 8, (k) « B, (k).

(@) The radial Schrédinger equation for r > r is

[ o010

dr3+k2 Xy () =0 (for r>0) (15.6.1)

which due to the infinitely repelling potential must be constrained by the condition ¥, () = 0. The s-wave
general solution is, therefore,

(1) = { Cysink(r—ry) r>r,
k0 -

(15.6.2)
0 <,
The phase shift &, (k)is, by definition, given by the asymptotic form of equation; namely, &, (k) = —kr,.
Thus, in the s-wave approximation,
8=k e sin (krg) ~rye
dc 2.2
g0 = ksin"(krp) =rf (15.6.3)
dn 2
L o, = 737 sin" (kr) =~ 4nr}

() From (/5.6.1), the p-wave radial equation is

2,02
[dTﬁkh—T:}x“(r) =0 (15.64)
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The general solution is given by [see (/5./8) in the Summary of Theory]
% (ry = cyrjy (kr) +dirn (kr)
where j, (kr) and n, (kr) are the spherical Bessel functions:
sinx cosx cosx sinx

j](x)=7‘ X n](x)=_ 2 _T

For A = ¢, /k, Aa = -d,/k we obtain

L (1) = A[Sink(:") _ cos (kr) +a( Cosk(rkr) + sin (kr) )]

where A and a are both r-independent constants.
(¢} From (15.6.7) and the condition %, (r,) = 0, we find

sin (kr;)
cos (kr)) ———
_ o kg
4= cos (kryy
% tsin (krg)

0

Furthermore, the asymptotic form of %, (r) is
Xa(r), 5. ~ Al-cos (kr) +asin(kr)] = C,sin(kr—g+6,)

Cl[sin(kr—g)cos o, + cos(kr—;—t]sin 5,:|

= C, cos &, [—cos (kr) + sin (kr) tan 3]

Identifying in (15.6.9), A = ¢, cos 8, and @ = tand,, and using expression /5.6.8 we obtain

sin (kr,)
cos (kry) — T(L
7o
tan & (k) =
RIS T cos (k) )
T'() + sin (klo)
(d) Inthe limit kr, « } we have
(kr )3 (kry)?
sin (kry) = kry + TO cos (kry) =1- 20

and (/5.6.10) takes the form

1 |
tan 61 (k) = 3 (kro):‘ = 5[ (k) = _3 (kr())3

265

(15.6.5)

(15.6.6)

(15.6.7)

(15.6.8)

(15.6.9)

-~
e
Ch
[=.%
-
)

S

(15.6.11)

(15.6.12)

15.7. A (point) particle is scattered by a second particle with rigid core; that is, the scattering potential is V(r)
=0forr>aand V (r) = o forr < a. The energy of the scattered particle satisfies ka = 1. (a) Find the

expression for §,. Complete Table 15-1 (express 6, in radians).

Table 15-1

tan §, 3, sin 3,

(b) Calculate the differential cross section do/dSQ for angles 0 and w, taking into account only the
waves [/ = () and [ = 1. (c) Calculate the total cross section o taking into account only the waves /=0

and ! = 1. (d) What is the accuracy of part (¢)?
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{a) The phase shifts for a rigid sphere are given by the equation

J, (ka)
tan 9, n (ka) (15.7.1)
Using the known expressions of the spherical Bessel functions (see the Mathematical Appendix)
. sinx cos X
Jo(x) = _‘, ny{x) = - P
. sinx cCoOsx cosxy sinx
i =T i = -Te-T
. 31y, 3 cosx 31 3 sinx
Ja(x) = (P—;)smx— 2 ny (x) = —(ﬁ—;)cosx— = (15.7.2)
and substituting x = ka = 1, we find tan §,=-1.56, tan &,=—0.22, and tan d,= —0.02. Therefore,
Table 15-2
tan 0, 9, sin 5,
=0 -1.56 ~-1.00 -0.84
I=1 -0.22 -0.22 -0.22
=2 -0.02 -0.02 -0.02
(b) The differential cross section is given by
2
o e |
0= @l D, QI+ sin g, P,(cose)‘ (15.7.3)
(=0
For!=0,tand k = a-,
d . .
£ = allsin 5(,9'8" +3 sin 5,9'6‘ cos8|®
=a?| sin’ 8, + 6sin §; sin &, cos (§,—3,) cosB+9 sin’ 9, cos29] (15.74)
Substituting 8 = 0, © we obtain
9 - 47[sin” &, + 6 5in 8, sin 3, cos (8,~8,) +9sin’5 157
dQQ = a*|sin 0, T 6sin 0, sin 0, cos (0, —0,) +9sin" 0, (15.7.5)
L
with § and 8, given in Table 15-2
th &, o givenin 15-2,
(¢) The total cross section is given by
4 - .2
Gy = FZ (2/+ 1) sin” 3, (15.7.6)
(=10
For/=0,1and k = a-',
G, = 4%a?[sin’ 8, + 3sin’ §,] = 0.854na2 (15.7.7)

(d) A rough estimate on the accuracy of calcnlation in part (¢') is given by calculating the additional term { = 2;
G, ~ (0.85 + 0.002) 4ra? (15.7.8)

15.8. Consider the potential of a square well of depth V:

-V, r<a
V(r) = (158.1)
0 r>a
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Setk = J2mE/#2, ky= [2mV, /A2, and K* = k2 + k2. (a) Calculate the phase shifts 5, and 5,
for low-energy scattering (ka « 1) . (b) Find the condition for resonance scattering of the s-waves and
p-waves. (¢) Calculate the total cross section for “off-resonance” scattering at low energies (ka « 1 and
61 « 80 «1).

(@) We begin from the radial part of the Schrodinger equation:

2
[;72+K2—1([; l)}x,“) (=0 (for r > a)

2 (158.2)
[C%+k2—1(1; l):|7(,,(?~')(r)=0 (for r>a)

where %" and ¥ denote the solutions at r < a and r > a, respectively. The general form of % (" and %,?
is given by
(W =Arj, (Kr) + Born, (Kr)
X i .r iy (15.8.3)
X ¥ = Crj, (kry + Dyrng (ki)

where j, and n, are the spherical Bessel functions, and A, B,. C;, and D, are constants. In particular,

) sinx cosx
Jﬂ(x)=_.x HO(X)z— T
. ] (15.84)
. sinx Ccosx cosx  sinx
h)="3 -7 ny () =- 2 7 x

Actually, since the radial wave function R, (r) = %, (r) /r must be regular at the origin (r = 0), we can set in
(15.8.3) B, = 0. Hence, in the interior region (r < a), we have

R{(") = A{j{(K") (15.8.5)

The phase shifts &, can now be determined by calculating the logarithmic derivative of R, (r) [see Summary
of Theory Egs. (15.25) and (15.26)].

kj; (ka) =, j, (ka)

- kn, (ka} —yn, (ka)

tand, (15.8.6)

. Substituting (/5.8.5) for R, (r) into (I5.8.6) and using (15.8.4), we therefore find

1
YO=Kcot(Ka)—E (I =0)
Ka 2 (15.8.7)
Y'=1—K'acot(l('a)_a (r=1)

so that for I = 0,

(ka cos (ka) — sin (ka) ) sin (ka)
5 = (ka)? ("
tand, = (ka sin (ka) + cos (ka)) cos (ka)
(ka)? tT™ kq

In the limit ka — 0, so (15.8.8) reduces to
Yoka?
“l4y,a

(15.8.8)

tangd, = ka «1 (15.8.9)

(ka)3 t-via

3 2+va ka» 1 (15.8.10)

tand, = —

where 7, and vy, are given by (/5.8.7). Note that unless y,a = -1 or Y,a = -2, both §, and &, vanish as
k—0 and 5, « 8 «1.

(b) Resonance scattering occurs when a particular phase shift becomes exponentially large. Resonance scattering
of s-waves (ka <« |, [ =0) is found by using (15.8.7) and (15.8.9). Thus,1 + y,a = 0= Ka cot(Ka) = 0
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and the resonance condition is

T
Ka=(2n+l)§ (n=12,...) (158.11)
Cimilarly raconance ccattaring of nowavee La « | I=1Yic 2avag=0=2KagcotiKa)l = +oo and the
Similarl y, resonance scatterin g of p-waves (ka«l, I=1)is 2+7va 0= Kg cot({Ka) teo and the
resonance condition is

Ka = nmt (n=1,2,..) (158.12)

The total cross section is given by
in = L2
o, = pz(zu 1y sin® §, (15.8.13)
(=0
Recall that unless yja = -1 or y,a = -2 [see (/5.8.9) and (/5.8.10)] botk &, and 8, vanishas k— 0.

However, as a consequence of the 1/42 factorin (/5.8.3) only the / = 0 partial wave gives a finite contribution
to the cross section. Thus, for off-resonance scattering (kg « 1, 8y« 8, « 1) we obtain

in Anyia* tan (Ka) \?
6, ~ 73sin’ B, = ————my = 47t02( 1 —'ép*:(,,—a)) (15.8.14)
i AT e (l 'f"YO(I)“ \ nd J
n
where K = k3+k2¢ (2n+ 1)5?1‘

Refer to the potential of Problem 15.8. (a) Find the differential cross section do/dQ for s-wave reso-
nance scattering (ka« 1,1 =0). (b) Find d6/dQ for p-wave resonance scattering (ka « 1, / =1).

(a)

From Problem 15.8. we have

Yoka?
[ tan§, = [+ Yo
(159.1)
Yoa=Ka cot (Ka) -1

k212 k2
where K = kf] +42 = ko( 1+ k_gj =~ ko( 1+ 2—1%) Near the resonance, t -~ roa~ 0 and &, is not neces-

sarily small. However, using (/5.9.7) and the identity sin §, = 1/ (1 + cot 280) , we find
(ka)? (Yoa)?

L2
sin” §, = ) (1,2) 7+ (17 7.0) (15.92)
Furthermore, if ka « 1, we can expand Y, (K) in a Taylor series about K = k,:
&y
Yo (K) =Y0'K—k +37(K ) (K—kg) +++- (15.9.3)
= 4 K=t

17 k)2
where K- 4, = E(k_) . Using (15.9.1) we then find that in the leading terms of Ka, v, = o, + Bk2, with
0

}
0y =kgcot (kga) -~

B 1 ‘) koa a (15.94)
=57 | cot(ka) ——5s—| =—5
0 2k0[ 0 sinz(koa):i 2
Hence,
(ka)?
1 +Ya=1+aya+P,ak? = kya cot (k,a) - 5 (15.9.5)

Finally, substituting (/5.9.5) back into (/5.9.2) we obtain

do a?

o - TZaRE (1=0) (159.6)

k2a? + [E_,O— 3 J

where ka « | and §, = kya cot (k,a). Recall that near the resonance |§)| <1, do/dQ for §; = 1 and
{ = 0 is shown in Fig. 15-4 (in (12 units).
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do/dQ
1.0 \
08
0.6
04
0.2
2 4 6 8 10 ka
Fig. 15-4
(b) From Problem 15.8 we have
_ (kay3t—-"Ya
tan 8 = 3303
K2q2 (15.9.7)
N4 = 1"Ka cot (Ka) -2
In this case we find
.2 1
sin” 9, = vy, o (15.9.8)
b+ [1 —Y,a] (ka)©
where | - y,a = 3 . Repeating the calculation steps of part (b), we have
1 k2 5
K= k+3%, T (K) =0 + Bk (15.9.9)
where near the resonance the coefficients o, and B, are
2
o, = —kgtan (kya) - -
(15.9.10)
a
B, )
Hence,
ka)? ka)?
2+ya = 2+04ya+ B ak? = - ka tan (kja) - ¢ ;) =§, - ¢ ;) (15.9.11)
where ka « 1 and |§,| < 1. The contribution of p-wave resonance scattering is
d 9
5 = G 0870 sin’3, (15.9.12)
Therefore, substituting (15.9.8) into (15.9.12) with the help of (15.9.11), we find
2
do 9k*a® cos 0
m = (ka)2 3 ([=l) (15913)
(ka) 5+ [gl - 2 ]

15.10. Using the Born approximation, calculate the phase shifts 8, for scattering in a centrally symmetric field.

The scattering amplitude for a central field in the Born approximation is given by

f2(9) = —iJ- rosin (kry U (rydr (15.10.1)

0
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This approximation is valid for a sufficiently weak potential when all the phase shifts 8, « 1. The expression of
f(8) interms of §, is

which reduces to

L
F8(8) “22(2“ 1)8, P,(cos8) (15.10.3)

=0

Multiplying (/5.10.3) by P,(cos8) and integrating (using the orthogonality relations of Legendre polynomials) we

1
28
ﬁndJ. (@) P,(cosB)d(cosB) = +T{‘ Therefore, by comparing with (/5.70.1) we obtain
-1
oo I o 1
28, 1f [ ( [ sin (kr)

+T=—EJ rsin(kr)U(r)er P,(cosB)d(cosB):—J rEU(r)er or P, (cosB)d(cosB)
0 -1 0

=—I 2} Ckryr2U(rydr (15.104)
0
Namely, if all the phase shifts are small one has
oF = —kj r2U (r)j}Ckrydr (15.10.5)

172
J Jii12(r) leads finally to

|a

[

r

0
I
Using the relations U = 2uV/#? and j,(r) = L

k
of = ‘%j VY Uy (k)2 dr (15.10.6)

0

15.11. For the potential V (r) = VR (r— R) : (a) Calculate in Born approximation the quantities f(8) and

dc
20" Specify the limits of validity of your calculation for both high- and low-energy scattering, respec-

tively. (b) Calculate the phase shifts 6, for all the partial waves in the approximation that corresponds
to the Bom approximation. (¢) Find the condition for which s-wave scattering is dominant. Obtain the
differential cross section for this case and compare with the result of part (a).

(a) The scattering amplitude in the Born approximation is given by

P 2p 3
(9 = el K V(rydr (15.11.1)

where [ is the mass of the particleand q = kf+ k, is its momentum transfer. For a spherical symmetric poten-
tial, the angular integration can always be performed and (/5.77.1) reduces to

oa

Substituting in (75./7.2) the potential V (r) = V,R6 (r— R} we obtain

2uV,R?

13
FE(0) = —q—ﬁozsin(qR) (15.11.3)
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where ¢ = 2k sin(0/2) and k = J2uE/h2. Therefore,

do WAVER®
ol | F8(0)]2 = Wsmz(qR) (15.11.4)

The Born approximation is applicable in cases where the scattering potential can be considered as a perturba-
tion, namely, under the condition

hk f15.11.5)
m A1

J. (e¥* — 1)V (r)dr
4]

In our problem, this condition of validity can be written as

£2
= VR sin (kR) « 2: (15.11.6)

J. e'*r sin (kr) V (r)dr
0

We can now distinguish between two limiting cases that depend on the value of kR:

2UV R 2V,R ) )
I PR T Ry © 1 {high energies)

2LV, R (15.11.7)
I1 rr o« (low energies, kR « 1)

We note that the first condition (kR arbitrary) is less restrictive than the second one (kr « 1). Equation
(15.11.7T) indicates that Born approximation is applicable for scattering at sufficiently high energies. Equation
(15.11.711) shows on the other hand that if &R « |, then the Born approximation is valid for all velocities
v = fik/p (in both cases one must, of course, consider scattering from a relatively weak and short-ranged
potential). We can also verify, from (15.1/1.4) and (15.11.5), that in the low-energy limit (gR — 0) the Born
scattering cross section is completely isotropic,

(b) Recall (Problem 15.10) that the Born approximation corresponds to the case where all the phase shifts are rel-
atively small ( &, ~ sind, < 1). Thus, we obtain

au b RUR2Y
5 = 'ﬁ_l;_" V) Uigra k) Vr = === Uy (RR) 12 (15.118)
0

Note that using the asymptotic Bessel function expressions

2 .
| J,,,,,z(x)x_,w—>jn—_xsm(x—1tl/2)

2 xle1n2
L VLS n(2i+ 1)1

(15.11.9)

we can recover the conditions (/5./1.7) of part (a). Substituting expression (/5.77.911) into (15.11.8), we find
that for arbitrary value of kR,

TURV, 2
|5{|< %7 iR © 1 (15.11.10)

Thus, the condition |5,| « | for all coincides with (/5.71.711). Similarly, substituting expression (/5.11.911)
into (15.11.8) for small value kR « 1, we find

TURV2  (kR)2+!
O~ —F Al 2l+ O}?

Hence, the condition &, » &, coincides with (15.11.71I).

From (15.11.17) we find that if kR « | then §; » §,. This result is in agreement with the general analysis of
partial wave expansion, which states that for finite-range potential the main contribution to the scattering
amplitude comes from values of { < kR, where R is the range of the potential. Using (/5.11.11) for s-wave scat-

tering (! = 0) we obtain

(15.11.11)

A~
©
——

2UR3V ok
8 = sindg~ ———7— (15.11.12)
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Thus, the leading term of the differential cross section is

d 1y, 4p2RoVE
;% = ﬁ‘e 80 Sinf)niz = Tg {151113)

As expected from the previous discussion, (/5.7/.4) and ({5.1/7./2) coincide in the limit gR — 0 . In this case,
both the s-wave approximation and the Born approximation lead to a differential cross section that depends
neither on the angle of scattering nor on the energy of the incident particle.

15.12. A particle of mass L is scattered from a spherical repelling potential of radius R:

Vo r<R
Vi =
0 rzR

(a) Using the Bomn approximation, calculate the total cross section in the limit of low energies. (b)
Repeat the calculation of 6, by using the partial wave expansion, and considering only the s-wave
contribution,

(@)

(b

The scattering amplitude in the Born approximation is

1 2uVodn [~ . 2UVY,rsin (gR) R cos (gR)
) = _57'}]— ) sin (gryrdr = _E—[ . p :I (15.12.1)
This leads in the limit gR — 0 to the isotropic cross section:
2
do? 42V Re
d_Q = V‘?(Q)P - —-————9ﬁ4 (15.12.2)
so that the total cross section is given by
 fdo® _ 16mp2vERS o
Or = J_-dQ A2 = —97‘;—4 (15,12.5)

In the limit £ — O it is sufficient to consider only s-wave scattering. In order to determine the phase shift &,
we examine the radial Schrédinger equation for ¥, (1):

d? 2uE .
[W+%]X(l’(r):0 = %4 (r)=Asin (kr+3,) r>R
&2 2u (15.12.4)
L,—rz t+ 52 (E- VO)]X5 (n=20 = x2(r)=Bsinh (kr,[(V,/E) - 1) r<R
where k = (ZUE/R?) /2 and V» E . These solutions satisfy the boundary conditions
X4 (R)= %3 (R) 2o (Ry=28 (R (15.12.5)
Namely,
Asinh (kR + §,) = Bsinh (KR)
Acos (kR +8,) = Bcosh (KR) (15.12.6)
where K = k([ (Vo/E)-1]172=k(V,/E)"/?), and thus
tan (KR +8;) = (E/V,) /2 1anh (KR) (15.12.7)
and since kR « 1,
I o= (E/V,) 172 tanh (KR) - kR
1 (15.12.8)
fo(8)=ge™ sin &,
Finally, the total cross section is given by
4n . 25 _4m tanh (KR) 72
o9 =% sin’5, = 283 = anre | 4 - 2| (15.12.9)
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Note that (/5.12.3) and (15.12.9) coincide only in the limit of a very short-range potential (kR « 1). Note also
that although both methods lead to isotropic differential cross sections, the Born approximation involves a vio-
lation of the optical theorem.

15.13. Particles are scattered from the potential V (r) = g/r2, where g is a positive constant. (@) Write the
radial wave equations and give their regular solutions. (b) Prove that the phase shifts are given by

1
8,=§[1+§— (Hi) 2;‘23} (15.13.1)

(c) Find the energy dependence of the cross section for a fixed scattering angle. (d) Find &, for
21Lg/h? « 1 and show that the differential cross section is
do m glu (9)
46 = 2#2 E N2
where E is the energy of the scattered particle. (¢) For the same potential, calculate the differential cross-
section in the Born approximation and compare it with the above result.

(15.132)

(a) The radial wave equation is
d? 1)
[;;2 +k2-U(r) - ——'-—-]x“ (n =0 (15.13.3)

with k = J2uE/A2, U = 2pg/h?r2and ¢, = R (r) Y] = ¥;,(r) ¥,". Substituting the given potential we
get

d?
(v e-a[3E v 1o 0 Juor =0 (15.13.4)
For g = 0, the solution of (15.1/3.4) is given by a free spherical wave:

2k2r? sin (kr - 1l/2)
xh(r) = ,f kD), e~ (15.135)

Therefore, the asymptotic solution for R (r) = %,,/r is
sin (kr + /2 +8)  sin(kr-m1/2)

R, (r) ~ o = o (15.13.6)
where [ is given by the relation
T(T+0) =I(t+1)+28 “g (15.13.7)
(b) By comparing the two sides of (15.13.6), we oblain
8 =-1)5 (15.13.8)

where 1 is found by solving the quadratic equation (/5./3.7):

1 1
§J1+4[1(1+l)+ ;2‘?} -—5 J +l(1+1)+ ug

99 f(1+ ) z;l‘f sign (+) = | >0 (15.13.9)

Finally, substituting (15.3.8) into (15.13.7) leads to (15.13.1).
(¢) The cross section is given by

==

NI-—-

e .
Q- 2 (21 + 1)9'6’ sin §, P,(cos 8) (15.13.10)
1=0
Since the &, are not dependent on & (in our particular case), we have
do 1 1
Pt il (15.13.11)
dQ K E 6 = const.




274

(@)

(e)

SCATTERING THEORY [CHAP. 15
For 2ug/h? « 1 and using (/5.13.1) we obtain
- 112
T} ] 2ug
o, = -1+-—(1+—) I+
(= ol U)o
L a2/
- E1+l—(1+1) TR . S U N . S (15.13.12)
2 2 2 1)? |
A2\ 1+ 5 h? I+3

Thus, substituting into (/5./3.70),

do 1 T ug .
o= k22(21+ D32+ 172y Fi(cos 8)
=0

I vn
=12 L—ﬁTr,(cos 8)

(=0

AT L, L
Lr,(cos 8)
{=0

In order to sum the series, we will use the generating function of 7, (x):

N 1
| = ——— . = ——
ZP (01 = m ZP,(cos R Ve (15.13.14)
[=0 (=0
Therefore,
do n2ulg? r2pg? ]
{Tﬁ = 4141,‘7-:_2rn My = RﬁzE ,.:..2/0 Vi BY (151315)
Rt C 2 a1} LOs/ L) - Sili (U <)
Finally, using d€Q = sinB d6 d¢, we get
3 3 .
do ®mug? sin®  mpug* sind
8 = 4R%E gn?(p 2y | 2h°E 1-cosB (15.13.16)
This result coincides with (/5.13.2).
In the Born approximation, the scattering amplitude is
2pg 2ug “sin (qn)
fi(0.0) = ggfert rUHIY = mzj aetardr = G| T
0
Tug .
= "hig? lg = 2k sin (8/2)] (15.13.17)
Therefore,
do n2p2g2 1
= |f(8, 9| = (15.13.18)

4n%% sin®(8/2)
which coincides with (15./3.15). This result is expected since all the phase shifts are small [see Summary of
Theory, (15.27)].

15.14. Calculate the total cross section for scattering from a completely absorbing sphere of radius a (ka » 1).

The problem of scattering in the presence of absorbing can be treated phenomenologically by introducing the
complex scattering potential:
8, = &,+in,,suchthat |s) =le
the equality 5| =
shifts one then finds that the total cross section consists of two parts, 6, =

V(ry > Vp—iv, (V,20). Then, one ends up with complex phase shifts
m,| <1, where ‘S,| = 0 corresponds to the case of complete absorption. (Note that
1 is satisfied for real phase shifts, i.e., nonabsorbing media.) By introducing complex phase

o, + O,,. which are given as

(15.14.1)

T N 2
oy =Y, QI+D]1-s)
r=0
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15.15.

and

-
Cuns = EZ 21+ (1-]s]?? (15.14.2)

Recall that for potential of finite range a, if
I({+1)> (ka)? = §, =035, =1 (15.14.3)

Hence, in our problem we have

{ 5;=0  I(I+1) < (ka)?

15144
s, =1 1(1+1) > (ka)? ( )
Setting L (L + 1) = (ka)? and substituting s, of (/5./4.3) back into (/5.14.1), we find
L
n i1 T
O, = G, = k—zz(21+ 1) = k_ZL (L+1) = Eg(ka)z = nal (15.14.5)
1=0
Therefore,
o, = 2na? (15.14.6)

Note that this result is two times larger than the classical result. However, it is half the result of scattering from a
hard sphere.

Two ions of He" are scattered from each other. The nuclear spin of the ions is zero. The interaction
between the 10ns is Coulombic. (a) Write the scattering amplitude in the frame of center of mass. (b)
Find the differential cross section if the total spin is O (singlet). (¢) Repeat part (b), with total spin of one
(triplet). (d) What is the differential cross section for a system of unpolarized ions?

(a) The scattering amplitude for Coulombic interactions (see Problem 15.19) is

n —ir:ln(sin2(0/2)) +1m+2m
0) = — ¢ " 15151
1(0) 2k sin” (6/2) ( )

el

where Ny=arg"'(1 +in)and n EpZ'Zﬁzk. Here, u = m,, /2 is the reduced mass, k = J2uE/A? and

Z=27 =1
(b} The nuclear spin is zero. Thus, the ions are identical fermions (each has spin 1/2 contributed by its electron).
If the total spin is zero, the system is in an antisymmetric spin state, and hence the orbital wave function must
be symmetric
e—2inin {sin{8/2)) e»zmln(cos (872))

.2 + )
sin” (8/2) cos” (6/2)

n? 1 1 2cos [nln tan’ (6/2)]
= 32| =73 T 3 2
sin (8/2) cos (8/2)  in (8/2)cos (0/2)

2

do ys=0 )
(EJTl) = |f(8) +f(R-0)]2 = ‘_4"72

(15.152)

(¢) This is the same as in part (b), but now the system is in a symmetric spin state (triplet}. Hence, the orbital wave
function must be antisymmetric:

, 2
n [ 1 1 _ 2cos [nlntan (9/2)]] (15.15.3)

do y=!
_ = e — ﬂ—e 2= — +
(@) - rora-or -5 sin(8/2)  cos*(8/2)  sin?(8/2) cos’ (8/2)

(d) For an unpolarized ion beam, the probability of having total spin s = 0 is 1/4, and the probability of total spin
s=1is 3/4. Therefore,

do l(d_o-)s:() g(d_o-)x=1
0 = aldq +3\ 70 (15.154)
Substituting the result of previous calculations ({5.75.2) and (/5.15.3) leads to
2 2
‘cj_g _ # : 1 . i _ cos [nintan?(6/2) ] (15.15.5)
sin*(0/2)  cos*(8/2)  sin?(8/2) cos?(8/2)
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Note: In the limit of low energies r » 1, (15.15.5) differs from the classical result. However, the term oscillates
rapidly so averaging over very small angles destroys the interference.

1

15.16. The interaction potential of two identical particies of spin 5 is

Vin=vn [(Hl+o,- a,l

where ¢, are Pauli matrices and 1 is the unit operator (see Chapter 7) in the spin space. V (r) is given by

k2

-— r<R m
vin=] 4w (u= 5)
0 r>R

(a) What is the result of applying the spin operator [ (3) 1+ G, - 0,] onthe singlet state and on the tri-
plet state? (b) Two such particles are scattered on each other at low energies, kR » 1 (k = J/ (2UE/A?)).
What is the dominant phase shift that contributes to the scattering amplitude (and the cross section) if
the totai spin of the system is s = 07 (¢) For the conditions in part (b), what is the dominant phase shift
if s = 17 {d) Calculate the phase shift of part (b) in the limit kR « 1. Find the cross section. (¢) Calculate
the phase shift of part (¢) in the limit 4R « 1. Find the cross section. (f) Find the cross section for an unpo-
larized beam,

(a) The total spin of the system is 8 = AG/2, where ¢ = O, + 0, . Hence,
o’ = 6}+0%+20, G, (15.16.1)
From the properties of Pauli matrices,
0}=0,-0, =0}, +cl +07 = (31 (15.16.2)
and similarly, 6 = 0,0, = (3) 1. Inthe singlet state o?|singlel) = O theretore, using (/5.16.1) we
find
. 1 .
(O, G,)|singlety = 5(0 -3-3) llstnglet) = —(3) llsinglet) (15.16.3)
In the triplet state o?jtriplety = 8|tripler); hence, similar to the previous calculation,
1
(0, oy ltriptety = 5(8-3-3) Lyriptery = Liriptes) (15.16.4)
Finally, for the operator [ (3) 1+ g, - 0,], we obtain
I (31 +0, 0,]singlery = (3-3)Isinglety = 0 (15.16.5)
| | G &) 1+ G, - G,lltriplety = (3 + 1) |triplet) = 4)eripler)

(b) For total spin 5 = 0 the system is in the antisymmetric singlet state. Since the total wave function must be
antisymmetric (fermions), the orbital wave function is symmetric. In general, only even partial waves contrib-
ute to a symmetric orbital wave function. In our case V =0 so all the phase shifts vanish.

(¢} Fortotal spin s = 1, the system is in one of the three triplet states. The spin wave function is symmetric and the
orbital wave function must be antisymmetric. Thus only odd partial waves contribute, and for &R « 1 the dom-
inant phase shift is 8§, .

(d) Let us consider explicitly the phase shift 8, for the s =0 state. The radial wave function R, (r) = X, (r)/r
is found by solving

[_4_2_ I+ 1) 2u
arrt™ 2 T R?

The solution R, (r) is found by setting V = 0 and / = 0 in (/5.16.8). Therefore,

V+k2j|x“(r) =0 (15.16.6)

sin (kr .
Ro(n = BEL ) (15.16.7)
The logarithmic derivative ¥, is then
1 dR, 1 kj, (kR)
YO = Ro ar ek = k cot (kR) -——[—e = —m (]5168)
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where jj(x) = —j, (x) has been used. Since V =0 we expect that all phase shifts vanish. In particular,
kjp (KR) Y 1o (KR) —kj, (kR) —kj, (kR) 0
0 7 kny (kR) —Yono (KR) = kny (kR) —yyn, (kR) ~

tan (15.16.9)

and (o) ™=% = 0.
(e) The dominant contribution for states s = 1 comes from 8,. Substituting / = 1 and V = 4V (r) = #2/pr?
[see (15.16.2) and (/5.16.5)] back into (/5./6.6), we have

dr 2 2uhk?
[(7;5—;5+ﬁg;‘z+k2}xk.(r) =0 (15.16.10)

Therefore, R, (r) = R, (r) = j,(kr)and ¥, = ¥, . The phase shift 8, is now given by
kj'l (kR) _'Yljl (kR)

00T Ty (RR) ~ yym, (RR) (13-16.11)
In the limit iR — 0, we have
: X x 1+x2/2 1 , 2
Jo(xy =1 -3 Li(x) =3 n(x) =- = Ji(x) = 3 M () =+3 (15.16.12)

|
Substituting Y, R =— (kR)2/3in(/5.16.11), we find tan8, = g (kR)? « 1.The scattering amplitude for 8, is

3.
£(8) = 71 sin 8 P, (cos®) (15.16.13)
After antisymmetrization, we obtain
do \=! 36 2
- = |f(0) +f(r-8)]2 = |12f(8)]? = 53sin" §, cos O (15.16.14)
daqQ k 1
Finally, substituting sind, = tand, gives
dg \s=!
0 = RI(kR)? (15.16.15)
(H The cross section for an unpolarized beam is
do_1fdoen A doyr 30

15.17. Consider the scattering of two identical spinless particles of mass m. The interaction potential depends
on the distance r between the particles and is given by

L(l 1)2 <R
V) = | 16m\R " a re (15.17.1)
0 r>R

where R « a are constants. (a) Find the phase shift 80 (k) in the low-energy limit,

kR <<§<< 1 k = ‘2;;—5 (15.17.2)

where E is the energy in the center-of-mass frame, and p is the reduced mass. (b) Calculate the total
cross section. (c) Repeat your calculation for scattering of two identical spin 1/2 fermions that are
polarized in the singlet state. () Calculate [in the approximation of parts (b) and (¢)] the total cross sec-
tion for unpolarized spin 1/2 fermions.

(a) The reduced mass of the two identical particles Of mass mis 4 = m/2 . Setting

mANL LV

—8 I =—Vy r<da
V() = 1 AR a) (15.17.3)

0 r>R

and defining the constants

(zu(5+v0) J 1 (1 1)2 n(l 1)
- ———— — 2 -2 — - == - -
K = e = [k +37 Rtz "‘0—2 R+a (15.174)
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we have (see Problem 15.8)

Yok R?
tand, = —m (kR « 1) (15.17.5)

1
where v, is given by ¥, = K cot (KR) - R Thus, substituting 7y, into (15.17.5) we find

k
tand, (k) = ~KR + ¢ tan (KR) (15.17.6)

In the limit of (15.17.2), K — k, . Hence,

(8 A0 wwnowfHiB)g e
KR = kR =3 I+E = x l—a tan (KR) = tan| 5 +2 )1k (15.17.7)
Therefore, keeping the leading terms of orders kR and R/a in (15.17.6}, we find
20 2

tan80=—kR[1+7—tk—1—E] (15.17.8)
which in the limit R/a « lleads to tand; = —L;a «l.
The scattering amplitude in the s-wave approximation is

L,
fo(8) = 2" sind, (15.17.9)

For identical spinless particles, the amplitude must be symmetrical and therefore the differential cross sec-
tion is

de, ,_ 4
ol | fo(0) +f (R -0)|2 = z2sin 8, (15.17.10)
Thus, substituting §, in tand, = - (24a) /= and integrating over dQQ we obtain
64 2
Oy = @ (15.17.11)

For identical fermions in the singlet spin state the orbital wave function must be symmetric. Therefore, the
result of part (b) remains unchanged:

64
(64) "0 = —a? (15.17.12)

For unpolarized spin 1/2 particles, the probability of total spin 0 is 1/4 and the probability of spin I is 3/4,
Therefore,

I 3
0y = 3 (0p) ="+ 7 (5p)*! (15.17.13)
However, due to antisymmetrization of the orbital wave function in the triplet state, 8, does not contribute and
(6,)*=! = 0; hence,

1 s=0 16 2
S, = 7(6) = La (15.17.14)

15.18. A particle of mass m, and a velocity v, is scattered inelastically by a particle of mass m, at rest in the
Lab frame, where m, > m; (Fig. 15-5), resulting in two particles of mass m; and m,,
m, +m, = my+m,. In this process, an amount of energy Q is converted from internal energy of
m, + m, into kinetic energy of m; + m, . (a) Find the relations between the scattering angles of m; in
CM (0) and Lab (8,)). (b) Find the relation between the differential cross section do (8) /d2 and

el Vi 1T

do (8,) /d{l in the CM and Lab frames, respectively.

(a)

From the conservation of momentum and the definition of CM we obtain

m, v, =m,v
{ e (15.18.1)

mav ‘=m,v,
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Before After
m3."‘(
0
Lab  Frame - - Q- --- @----- D - CE SRR
m| msa ",

w

ms, vi’r(
cM Frame - - @ — - — - - eCa T

LT ny, vy )m, vy
Fig. 15-5

Simiiarly, froim conservation o

| . (15.18.2)
E+Q=3m v’ +3m,v;?

where E is the initial kinetic energy in the CM frame, and ( is the energy gain from the collision. Taking
v, = v-V and v, = -V, where V is the velocity of the CM frame relative to the Lab, we find that

m, m,
V = m,+m2v v, o= m;*’”zv (15.18.3)
Therefore, in the center-of-mass frame where the total momentum is zero, we have u cos@, = v/ cos@+V,
usin@, = v, sin@. So,
_ sin 6 __sinf
tan By = S8+ v/ v, cosB+y (15.184)
where y = V/ v/,
From ({5.18.1) and (/5.18.2), we have
m .My
V, = ”Tzv, v, = "Ta v, (15.18.5)
2
E m,m4(m,+mZJLf ~ mm,
E+Q ~ mymy\my+m,/ 0F T (my+my) tmyvi (15.18.6)
Therefore,
vz omm E
2 - L . —
Y =R T mmE+Q (15.18.7)
The relation between the cross section is found from the condition
do \Lab dg M
(aﬁ) sin 0,40, db, = (E] sin 0 d0d¢ (15.18.8)
However, $M = ¢! and from ({5./8.4) we have
2 (cos 0 + )2
c08"8,=T2 2ycos B+ 12
) ! (15.18.9)
sin@,d0, (1 + 2y cos 6 + ) ¥>=[1 + ycos 8} sin 8 46
Hence,
(ﬂ)ub (1 +27C039+Y2) 3/2(d_G)CM 15.18.1
aQ M+ycosdl  \dQ (15.18.10)
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15.19. (a) Write the Schrodinger equation for a system of two charged particles with charges Z_ and Z,' that
interact by Coulombic interaction (use parabolic coordinates). (b) Write the solution in the form

u(E,m) = e*v(En) (15.19.1)

Show that the asymptotic solution of v (&, n) for an outgoing wave in the limit » — o does not depend
on the coordinate 7. (¢) Express v (&) in terms of the confluent hypergeometric function and find the
asymptotic solution that 1s regular at the origin. (d) Find the differential cross section and show that it
coincides with the Rutherford formula,

(a)

(b)

(¢}

The Schrodinger equation in the CM frame is

[ EVZ z:'ezj' L !
-70 + == u(ry = Eu(r) (15.19.2)
where £ = £2k2/21 and | is the reduced mass. In parabolic coordinates,
¢ | 0 J x=JE_,_T] cos ¢
_;(“—cosn)—r—.« y=JEn sing o
]n:r(l+cost))=r+: | Y (13.13.3)
=0 z=5(M-%)
The Laplacian is given by
4 8(1) a(i)] 9’
and (15.79.2) is written in the following form:
4 a( 8] 8( 8] zZ'e?]  9° ”
§+n|:_§ E"g +ﬁ nﬁ _TJ+T‘)Z+,{‘ u(r) =0 (15.]9.5)

From the azimuthal symmetry of the solution we have # = u (&, M). In the limit r — oo the outgoing wave is
of the form r-le*” Therefore,

u(&m) = evir-z,r+zy, . —etv(r-z = ety (§) (15.19.6)

Equation (15.19.6) leads to a separation of variables in the form
n (E_,, n) = eikzy (é) = "N/ 2g-1kE/2y, (g) (15.]9_7)

Substituting (15.79.7y into (15.19.5), the Schrédinger equation is reduced to an equation for v (£€):

dv dv 27'e2
aga + (1-ikE) gz —nkv = 0 (nfuﬁz: ) (15.19.8)
This equation is of the form
I, dF
sgat (b-o gy -aF =0 (15.19.9)
and its solution is the confluent hypergeometric tunction F (a, b, ), where z = k€, a = —in,and b = 1:
v(&) = AF (—in. 1, ik§) (15.19.10)
The asymptotic solution of F (a, b, z), which is regular at the origin, behaves like
i(—z)"‘( a(a—b)) iefz"“”( (1-a) (b~a))
F___,m—>l"(b)|ir(b_a) I+ - ~“T(@ l+—-——z—- +} (15.19.11)

Substituting = = ik, a = —in,and b = 1, we find
AT/ 2 r 1 =
V(&) g m = AT T3 iny LE7™S 41, (8) jerthsninain | (15.19.12)
where
T (1 +in) eintnsin’(8/2)
T (=In) 2ksin’(0/2)

£.(8) = (15.19.13)
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Therefore,
ﬂi t[kz+nink (r-z}| i [k in24rs]
“,-_,m—>r(1+,-n) et Sl f, (9);6’ foonesy (15.19.14)
(d) Note that u is not of the form
ell\r
u,__m—>e"5+f(9)—r’ (15.19.15)

The reason is that the Coulombic potential does not decrease rapidly enough. However, we can generalize the
result and find the cross section by

do n
—= = [f(®)|} = ———— (15.19.16)
dQ 4k?sin° (0/2)
This is the famous Rutherford formula,
15.20. The scattering amplitude for neutron-proton scattering is given by
f(8) = E N (A+Bor-cM)I5) (15.20.1)

where A and B are “constants,” ¢ are Pauli matrices, and {[5), Iéf)} are the initial and final spin states
of the system IE_,),'f = {|+p+N), +,- = P+N>’ = p+N>}' (a) Calculate the scattering amplitude for
each of the 16 possibilities. (b) Find the differential cross section for scattering of [|+), — |+), and
l+)y — |-}y when the spin of the emergent proton is not measured by the detector. (¢) Find the cross
section for scattering in the states [singlet) — |singlet), |triplety — |triplet), |singlery — |triplet) .

(@) The operator G7- G = 620" + 6o/ + 0rGY operates separately on the proton and neutron states. For
example:

(Ho(Hy (A + BOP - O¥ )[40y = A+ B ((+,0 ), (+1,0, [ hy + (H, 0,14 (Hy O Dy + (H, 01 (+],8.14),)

Py

(15.20.2)
Using the results 6 |+) = |-), o) =il-), ©.+)=|+), and the orthogonality of the spin states
{+|-) = 0, we obtain '
<+|p<+|N(A +Bor oMy |+) )y = A+B (15.20.3)
Similarly,
(+H,(+ly (A +BO? - V) [+) |- )y = B[(+HO |+}{+|o |- ) + (Ho J+){+|o |- ) + {+|o |+}+o |- )] =0
(15.204)

All the 16 possible scattering processes are then summarized in Table 15-3.
(b) We consider the case where the incident proton is in a general spin state al+), + l-), (la|2 + [B]?=1). Since
the state of the emergent proton is not measured (and different componenis do not interfere),
(do) el
\dQ /ey —iny = 14
where f, is the amplitude for having a proton in |t ) final states, respectively. Using Table 15-3 for the
entries that correspond to the process |+}, — |-, we find

FIEEARN

[A+Bj2 0 o
@By o a_gp | p | = oA +BReIBRlA-BI2
) AN s

We assume now that the incident protons are not polarized. This means that we have equal probabilities of 1/2
to find a proton in |+, or |- ), initial states. Therefore, substituting o = 1. B=0,and o =0,B=1into
(15.20.7) we obtain

N

S5
v.J)

]
(13.2

Therefore,

(&%)mwm,, = (“‘B‘)MTM( g } =

A 7

d 1
(d_g)wwmw = 5(A+B]2+]A-BJ]?) = |A]? +|BI2 (15.20.7)
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Table 15-3
(+|p<+|[v (_' IJ,<+|N (+|,;(" IN (‘ I,,(_ |N
<+|p<+IN A+B 0 0 0
(- Ip<+|N 0 A-B 2B 0
(+,¢= Ly 0 28 A-B 0
14~y 0 0 0 A+B
4
Note that this result can be written as
do 1
-— ) = zTr(MiM) (15.20.8)
\dS /iy —in, T 2700 ‘ ' 7

which is valid for the case of unpolarized particles of spin 1/2. In order to use (/5.20.9) for the process
[+)y = |- )y . we replace the matrix M of (/5.20.6) by

eI

dO' l 2 2
40 Jiyy 1 -3, = 3 (0+41B]%) = 2|B] (15.20.10)

(¢) Consider the system in a singlet state where the total spin is 0:

This immediately gives us

1
binglety = 5 (), = ), 100 (15.20.11)

Therefore, the scattering amplitude is
1

f|smgler)—»|singlﬂ) = .2- (fi+, Yo |+ - )‘fi,,, Y= 4 _f‘IAi—) Sl ) +f|7+)a|-+))
)|
=5[A-B-2B-2B+ (A-B)] = A-3B (15.20.12)

Indeed, a great deal of algebra can be saved by noting the singlet state and the triplet states are eigenstates of
the operator G, - G, with eigenvalues -3 and 1, respectively:

(Oy- O, )singlety = 3|singler)

, (15.20.13)
(Oy - O ) ltriplety = ltriplery
Thus, the scattering amplitudes are
f(singlet — singlet) = (singlet| (A + BO, - G,)Isingler) = A-38
f(triplet = triplet) = {triplet| (A + BG - O )itriplety = A+B (15.20.14)
f(singlet > triplet) = (triplet| (A + BO, - G,)Isinglery = 0
The cross sections are therefore
do
(d_)ﬁ = |A-3802 (15.20.15)
(j_g)"iplel Sripter A + B8]

15.21. Consider the time-independent Schridinger equation in one dimension with V(x) = 0 only in the
finite region |x| < x,. (@) Show that for any solution of the Schrodinger equation ¢ (x), the probability
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current is a constant that does not depend on the position x. () The asymptotic form of the wave function
¢ (x) can be written as

J ¢, (x) =Ae'k* + Beiks X «~x,

| 0p (x) =Ceits 4 De-ikx X »—x, (15.21.1)

where A, B, C, and D are complex constants that are related by the scattering matrix S:

(245

Show that § is a unitary matrix.

(a)

(h)

The tinie-independent Schrodinger equation is

52
_2_mvz¢+ (V-E)¢ =0 (1521.2)

Since V and E are real, any solution ¢ satisfies the conjugate equation as well:
y JUg q
X+
n-

~3 V0" + (V=E)¢" = 0

Multiplying these equations by ¢* and ¢, respectively, and then subtracting the resulting expressions, we
obtain

p? h? h?
W(‘iTan‘i’* (V—EW)—(—;{N%W (V—E)¢')¢ = 3, (0°VI- (V")) =0 (I5213)
Thus,

-

iz V- [6°Vd- (Vo) o] = —iAV-J =0 (15.21.4)
Namely,
dj A W do*
9~ 0 where J(x) = 27,,1[43 £—¢%] (1521.5)

In the previous section we showed that the probability current ./ (x) is conserved and does not depend on x for
any solution ¢ (x) of the Schrédinger equation. For large negative values of x we have

5
%m L = (Ater® 1 Betkyy (ikAe'kr — [kBe ') — (Ae’® + Be i*¥) (~ikA e 't + [kB" e'kY)
= 2ik (|A]? - |B|?) (15.21.6)
Therefore,
hk
J, = ;(|A|2—|B|2) (15.21.7)

Similarly, for large positive values of x,
Jp = ﬁ,;f (Ic1? - D% (15.21.8)
Now, from current conservation, J, = J,, and
41— 1B = [C12=ID]> = [BI+|CI? = |A]? + |D]2 (15.21.9)
from which it follows that the scattering matrix is unitary, that is,

sts=1 (15.21.10)

Supplementary Problems

15.22. A particle with mass m | is scattered elastically by a particle of mass 2, at rest in the Lab frame. (a) Find the relation
between the scattering angle of 2, in the Lab frame and the scattering angle in the CM frame. Show that in the Lab
frame the particle m, will always recoil in the front half of the sphere. (b) Find the relation between the scattering
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15.23.

15.24.

15.25.

15.26.

15.27.

15.28.

15.29.

SCATTERING THEORY [CHAP. 15

angle of m, in the Lab and CM frames. (¢) What is the range of possible angles for scattering of particle m, in the
Lab frame for the following conditions: i. m /m, <1, ii.m /m,=1, iii. (m/m,) > 1.

sin © n
Ans. (a) tan©, = 1= cos B (059<n-—>tan0220-—>059252).
sin ny
(b) tan §, = cos B +y (anTz)

n ! .
(@i, ¥y<1-50<0,smii. y=1-30,=5-0<8,<5/iiil. y>1-50<6,<8P> = sin "/

A particle of mass m, is elastically scattered by a particle of a mass m, at rest in the Lab frame. (a) Consider particle
m,. Find the relation between the differential cross section in the center of the mass frame, do (8, ¢) /d€2, and the
differential cross section in the Lab frame, do, (6, ¢,) /d€2. (b) Assume m, = m,. Find the differential cross sec-
tion for scattering , in the Lab frame, if it is given that the cross section in the center-of-mass frame is symmetrical.
(c) Calculate the total cross section for part (h). Show explicitly that the total cross section is not dependent on the
related frame.

do,  (1+y2+2ycos B)32ds (  m)
@70 =" JT+ycos8 d@ \Y=p )

Ans.

[+ d id
(b) ﬁ‘; 4005903% [0<Bos§,0<¢052n)

dco 4o n/2 ' n
(©) 6, = mdﬂn = In cos 8,sin6,d0,| do, = ©.

D 0

Assuming azimuthal symmetry, find the relation between the scattering amplitude and the differential cross section.
Ans. do/dQ =1 f (|2,

"""""" |JENYT

Using Fermi’s golden rule calculate the probability density (per unit time) of the transition of a particle (mass n and
energy E) from initial state |p,) to final state |pf). Show that the cross section do/dQ = W (p, py) /J;, where W

1) 3E .
is the transition probability density and J , the probability current density J, = (m) gy coincides with the

Born approximation.

Consider the potential V = -V, for r<a and V = 0 for r > a. Show that the s-bound states (! = 0, E < 0) satisfy
the quantization condition: tan (Ka) = —K/k, where
22UV, QUEN/2
P ne ()7 ()

Following up on Problem 15.26, show that the phase shift for s-wave scattering states (/ = 0, E = 0) is
By = & (k) —kr,y, where tan Ka = + (K/k) tan [E (k) ].

Find the condition for resonance scattering at low energies (ka « 1), and demonstrate that for near resonance
do 1

BT 2 .
Q" p2 k3 cot” (kya)

Given the potential well V(r) = -V, for r<R and V(r) = 0 for r>R, (a) show that for
q = 2ksin (0/2) the scattering amplitude £(9) is

UVo2/ si
£(0) = ﬁ_zoc_l( sméfq) R cosq(Rq)) (15.29.1)

(b) Show that the differential cross section in the limit Rg « 1 is a constant that is not dependent on k or 0 . (¢) Con-
sider the potential V (r) = B3 (r). Use the Born approximation to find the differential cross section. Calculate the
constant B so that the results from parts (b) and (¢) coincide.
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|t
w
t
[~

15.31.

15.32.

15.33.

15.34.

do uzp? 47
22 3
Ans. (¢) dQ 47t2ﬁ4 ; B = 3 V R3,
. For the potential V = -V, for r<a and V = 0 for » > a, find the conditions for §, = n

Ans. ka«1 and tan{ka) = ka; k=, 2mVy/H

Derive the optical theorem 6, = 4RI/mf, (0) /k . Hint: Use the partial wave expansion of f(0) and the
n Y i R - i
Oy = ;7:2(214— 1 e - 12 O, = k_ZZ 20+ 1) (1-{e? 5;|)2
=0 (=90

Consider scattering of two identical spinless particles of mass m. The energy of the scattered particle is

= h%k?/2m, whereas the target particle is at rest. The interaction potential between the particles is
V(r) = V,/r?, where r is the relative coordinate. (a) Find the phase shifts 8, VI.(b) Write the differential cross
section do (0) /dL2 in the center-of-mass frame. (¢) Obtain dd, (8,) /dQ inthe Lab frame, where the target par-
ticie is initialiy at rest.

Ans. (a) §, = }:1—2(—1+Aﬁ+4[1(1+1)+2—:;/—0])]

2

. ]6 o do (8,) do (28
(b) d?}. 2(4L+1)e f 5in 8 Py (005 8)|. () —zt = 4cos By ;Q)

L=0

{a) Calculate in Born approximation the scattering amplitude of a particle with mass u from a spherical well poten-
tial with radius @ and depth V/;; calculate the boundary of a spherical well “point” when a — 0 and V, = = with
Vya® = C for a given constant C. (b} A neutron is scattered by a neutron. The neutron mass is #, and we assume
that the potential between the two neutrons satisfies the conditions given in part (a). Calculate the scattering ampli-
tude and the differential cross section (in the center-of-mass frame) when the neutron pair is in singlet state and in
triplet state.

Ans. (@ f(8) = 3”‘C[Sln {ga) —qa cos (ga}

. m 2uC
(ga)3 ]; q=2ksin(8/2): k=75 f(8) 4y 50— 3 57

2mC (do\s=0 4ami(C?
(b) singlet: f(8) = f(0) +f(n-0) = 327:{ 7q =9 e
do \=!
triplet: f,(8) = f(8)—f(R-8) = 0; (dQ) =0

Consider elastic scattering of two helium atoms in their ground state. Assume that we can describe them as impen-
etrable spheres, each of radius a. Designate by G,;, 0,5, and o, the total cross section of (He4, He3), (He?, He?),
and (He*, He?), respectively. (a) Using partial waves expansions, derive the three differential cross sections. (b)
Prove that for ka « 1, the relations 6,,:0,;:0,, = 1:1:4 hold.

Jy (ka) (ka)2+! 20+1 5 .
Ans. (a) tand, —n (ka) for ka« 1 > i+ [(21_1),,]2,f,— 7€ "sin 9,

2
do, - do, N C
QT EI,’IPI(COSB) CdQ T 2 fiPi(cosB)) +3 szp’(cose) ;
1=0

! =0, even =1, odd
|
do -
41(;4 =4 E f, P,(cos 8)
1=0

(b) 043 = 4ma?; 64, = 2ma’[2+ 3 (ka)?]; 6,, = 16Tal.

t2




Chapter 16

Semiclassical Treatment of Radiation

16.1 THE INTERACTION OF RADIATION WITH ATOMIC SYSTEMS

The Hamiltonian of a particle with mass m, charge e, and spin S in an external electromagnetic field is given
by
1 e \2 €
H=Z-n(p—EA) +V(r)+e¢—;1'ES-B (16.1)
where A is the vector potential, ¢ is the scalar potential, and B = V x A is the magnetic field. It is possible to
choose a gauge for which / will be simpler. The gauge generally employed in problems dealing with radiation
is the Coulomb gauge. This gauge is also called the radiation gauge or the transversal gauge. In this gauge one
chooses

V-A=0 =0 (16.2)

Thus, the Hamiltonian obtained in this gauge is
H—[p—z J <A C X _L5.B|=H +H 3
= 2m+V(r) + = e -p+2mc2A e = Hj+ (16.3)

where £ is the unperturbed Hamiltonian (in the absence of an external field) and H' (¢) is the perturbation
Hamiltonian. For a semiclassical treatment of the radiation we assume that the term A”is very small and negli-
gible (see Problem 16.2). In this case,
' ¢ e
H () =—;n—CA-p—;7-1'(:S-B (16.4)

This limit is called the low intensity limir.

16.2 TIME-DEPENDENT PERTURBATION THEORY

In the low-intensity limit, /' (¢) can be treated as a small time-dependent perturbation, If the system is ini-
tially in the state |/) and the perturbation is turned on at + = 0, the first-order amplitude for finding the system
in the state |f)at time ¢ is given by

{
1
(1 : vy | '

a; (1) = ,—ﬁ_‘- et (fIH (1) i) dr (16.5)

0
where h(oﬁ. =E,—E,. In a semiclassical treatment one usually assumes that the electromagnetic field A is

described by a plane wave:

A(r,n = 2|A0‘§: cos(k-r-wt+0) = Ajfexpli(k-r—wr) ] +Afeexp[-i(k-r—wi)] (16.6)

9 . A . . . . R . .
where A, = |A0‘ e 15 a complex number, £ is a unit vector in the direction of polarization, k is the wave vec-

tor, and € - k = O (transversal gauge). Therefore,

. - + . G
o el((l)ﬁ (o)t_lTﬁ €'(mf’+m)’—lﬁ

a; (1) = - ®, - ® T w,+0 A

(16.7)

286
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where

—_
[0
=)
oo

—

JT;E*,%‘%(fw”‘"mo[é' p+iS- (kx€)]i)

To=—=(fle™ A [-p—iS - (kx&)1I)
See Problem 16.4.

16.3 TRANSITION RATE

Consider the transition amplitude a (t) A resonant transition is obtained when the frequency of the
external radiation field is close to one of the characteristic frequencies of the unperturbed system, i.e., ® = tf,.
In this case one can neglect the interference term in (/6.7) and distinguish between resonant absorption
(w, > 0) and resonant emission ((0 < 0). The transition probability is then given by

[+ (cin [ (. — ) t/21)
|75 [ sin[ (@ -®) /2]
Pﬁs -2 i (coﬁ—co)/Z f (oﬁ.>0 (16.9)

(see Problem 16.4) and for induced emission:

’ I sin [ (@ —(0)[/2]
(mﬁ+m)/2

;<0 (16.10)

For a strictly monochromatic field, these transition probabilities depend strongly on the difference @ — @],
and lead to a nonstationary transition rate. A transition probability that is linear in time (constant transition rate)
is obtained if one considers the transition from an initial state I;\ to a continuum of final states If\ In this case

13 QR 18 A LOIISIBEIS hol¥ellom (AN L Sialls 13 L3,

the transition rate 1s obtained by using a Fermi golden rule:

+ d P f
i di
where p(E) is the density of the final states. Similarly, when the radiation field is not monochromatic, but rather
contains a spectrum of frequencies u(®), the transition rate is

|<f|T |;>! p(E;=E +hw) (16.11)

41t Cu(o fx
fi mzﬁ

A 2
(Flef™ "€ p2iS- (kxE)]d) | (16.12)
o,
where |i) and |f )are the initial and final (discrete) states, and the plus/minus signs correspond to absorption and
induced emission, respectively.

16.4 MULTIPOLE TRANSITIONS

In the long wavelength approximation, T4 ik-r--- s0 Tff- is given by the following multipole
expansion:
+ A / noa MOp A ,
I, zim(oﬁ(fle i +§(f| (L+2S) - (kx¢ )|l>——2"(f| (k-r) (¢ - )i (16.13)

The first term in (/5.13) corresponds to an electric-dipole transition. The second term corresponds to a magnetic-
dipole transition, and the third term corresponds to an electric-quadrupole transition. Usually, the transition rate
is dominated by the electric-dipole term; in this case the transition rate is
471:2"2 A N
W, = ren u(wp) [(FIE - rldl (16.14)
However, for particular states i) and |f), (f|€ - r|i) may vanish. This state is called the forbidden transition.
Note that for an isotropic external radiation field, the polarization vector € is randomly oriented. Averaging the
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components of the unit vector € over all angles gives

2.2

4ne
Wy, =~ w1 =8, utuy) (16.15)

B;; are known as the Einstein coefficients for absorption and induced emission.

16.5 SPONTANEOUS EMISSION

An excited atomic systemn can also emit radiation in the absence of an external radiation field. The transition

rate for a spontaneous transition, in the dipole approximation, 18 given by

spon 4e20)}l- a2
W = S5 =a, (16.16)

where A, is the Einstein coefficient for spontaneous emission.

16.1.

Solved Problems

The motion of a charged particle in an external electromagnetic field is described by the Hamiltonian

H = zlm(p—f—tA)2+V(r)+e¢ (16.1.1)
where A(r, f)and ¢(r, ) are the electromagnetic potentials, ¢ 1s the charge, and ¢ is the speed of light.
Show that the time-dependent Schrédinger equation iha—q; = Hyis invariant under the following
gauge transformation:

A=A = A+Vy(r,)
o0 = ¢—;l.§ (16.1.2)
rex (r.0) /R

you =e

a )
Under the gauge transformation (/6.7.2), the Schrodinger equation iﬁa—\': = H'y, takes the form

. a ri( e \ N
ih53,(Ty) = Lﬂkp—;A} +V(r) + ed'(r, r)JT\y
1 e e 2 ed
= [ﬂ(p—;A—;Vx) +V(r)+e¢—;;%]Tw (16.1.3)
However,
dy' 4 d je 0
a—\f =5 (Tw) = T(%’w;.w%) (16.1.4)
and
e
p(Ty) = —iAV(Ty) = T(pw+;\vi) (16.1.5)

Therefore, the right-hand side of (16.].3) equals

Lo-ta-5m2) 1ot rloseo-2]a

L( 5’)2 edy
=T\ p—CA +V(r)+e¢—gal W (16.1.6)
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16.2.

and consequently, expression (/6./.3) reduces to

Jd edy ay
T( ha — — =& =T{H-=%&
Py car VY 3 /Y (16.1.7)
. + ay
Multinluing (14 1 7N an the 1afr ke T wrn aheain dd oL 210, b o sben Qale ot dia s o ciand i ol
VIUpIyIng (/0.4./) O Uic iCit 0y « wi Ootain 7 I 1y, WILCH IS IS SUNrouinger cquation in e original

gauge.

An atomic electron with mass m, charge e and spin § interacts with an external radiation field, described
by the vector potential A (r, 7). The Hamiltonian of the system is

H = Hy+H' (1) (16.2.1)

where H, = p2/ 2m + V(r) 1s the “atomic” Hamiltonian, and H'(7) is the time-dependent remaining
interaction. (@) Show that the interaction Hamiltonian can be written as

€
- 2 -
H@) = —m(_A p+ S A mCS-B (162.2)
2m¢
whaora ¥V A — N AN and T — \7 v A IR CThneidar tha 1~ bttty Lol ad aceiommntn tha wala
wWillllv ¥ ° M~ — U, lV — U, allu 1y - Fal¥ e W \ll) SOULIdIUGL LLIC lUW‘llllUllblly LIL1IEL alll SLILIIall Ui 1cia-

tive magnitudes of the various interaction terms.

(@) The Hamiltonian of the electron in an external electromagnetic field is

1 e Y e
H=5-{p--A)] +V(r)+e0-—S B (16.2.3)

nc

where V(r) is the binding potential of the nucleus, (¢, A) are the scalar and vector electromagnetic potentials,
and B = V X A is the magnetic field. Equation (/6.2.3) leads to

_r e e e
H = om 2me (P ATA D)+ oA+ V) +e0 -0 S B
?
= Hy+ep- 2 c(p-A+A- p)+ﬁA' ;;;S B (16.2.4)

This expression is further simplified if we choose the gauge V -A = 0 and ¢ = 0 (the transversal gauge).
Taking into account that p = —iAV, and operating with (p - A) on an arbitrary function wy(r), we find

] d d
(p-A)w(r) = —zfz;a.‘ﬂ/&u(r) y(ry = —tﬁZ[(a - u)\y +Aua g ]
=ik (V- A)yy+A py=A py(r) (16.2.5)
Therefore,
P
H=H+Ht) = Hy- - = A p+2n - E?S B (16.2.6)

where H,, is the unperturbed “atomnic” Hamiltonian and H'(r) is the time-dependent interaction.

(b) Consider, for example, a hydrogen-like atom interacting with a monochromatic radiation field of angular fre-
quency ® = ck. In this case, the magnitude of cach term in (/6.2.6) can be approximated by its root mean
square value in a given unperturbed stationary state of H,. Let us define the following root mean square
values:

{AEJWIA-AIW 1627
p=J{vlp ply) (10-2.7)

and examine the relative magnitudes of the three inleraction terms of (/6.2.6):

e
H, = _m_c‘A(r’ n-p
(’2
H, = ~A" (r, 1) (16.2.8)
2mc
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where [yf) is an eigenstate of /, for which A # 0 and p # 0. Consider first the ratio H, /H):
Hl 2A2 A / H‘
2 L CRPAmC L (16.2.9)
In the low-intensity limit H) /H,, is a small perturbation. Consequently, the ratio H; /H| is also small. Note
that in the high-intensity limit, where the radiation is of the order of the atomic field, H can become as large
as H|. Consider now the ratio 4, /H|. Since B = V x A = kA, we obtain
Hy hB hkA _ # 162.10
H, Ap~ Ap pi (16.2.10)
Due to the uncertainty relation, A/p is of orcjfr of the Bohr radius (for hydrogen, a, = 0.5 A) and for optical
sources A = 5000 A. Therefore H. /H =107 « 1.
Note: The results of (/6.2.9) and (/6.2.10) suggest that H; and /| can be neglected in the low-intensity limit.
This conclusion does not hold in the following situations:

i. Forbidden transitions where the dipole matrix element of H) vanishes and H', is reduced to the same order
of magnitude as H'.
i Strictly forbidden transitions where the matrix element of /', vanishes identically,

A monochromatic radiation field of angular frequency w = ck is described by the following vector
potential:

A(r, 1) = 2|Aj|cos (k-r—f+6)

Ajexpli(k-r—wt)] + A} exp[-i(k-r~owr)] (16.3.1)

where A = |A0‘ei9 is the complex polarization vector, K is the wave vector, and A, -k = 0. (a) Cal-
culate the electric field E (r, t)andcthe magnetic field B (r, r) associated with the potential A (r, 7).
(h) Find the Poynting vector § = 7—E x B, and verify the relation

2

/ w
w=- = ——2|A0|2 (16.3.2)
¢ 2nc
where / is the intensity of the radiation and  is the energy density,

10A
(a) The electric field E = o or is given by

i@ . 0] .
E(r,t) = ?Ao explitk - r-wt)] - 7A(”; expl-i(k - r-owr)]

= ikAjexplilk-r—wi)] —ik A¥ exp[-i(k -r—w?)]

= -2k|Ay| sin (k- r -1 +8) (163.3)
The magnetic field B = V x A is given by
Bir,n) = ikxAjexpii{k-r—wnj-ikx A¥ exp[~i{k-r-owi)]
= 2k x[Ay[sin (k- r -+ 8) (16.3.4)

¢
(b) The intensity of the radiation field is found by averaging the Poynting vector § = anE X B over time. Using
(16.3.3). and (16.3.4) we find

¢
S = 1_tk|A0| x (kx|A)sin? (k- r—of+8)
L, 2 o’ ok
= sin? (k-r—wr +6)}|Aj|k = 71:_('|A0' Zsin(k-r-wr+0) (16.3.5)
where k = k/k is a unit vector in the direction of propagation. Thus, after averaging S (r, r) over one oscil-
lation pericd, . ,
— 0 w2
=g = m,|AU| sin? (K- r—wt+8) = 2m-|An| {16.3.6)
where sin? (k - r —wt + 0) = 1/2. Similarly, the mean energy density averaged over time is
| ————- ] o’
2 n? 24 12 2
u=zg(E+B) = 5[k |Ag)" + (kx Ag) - (kx A¥)] = 2nc2|A"| (16.3.7)
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Indeed, from (/6.3.6) and (/6.3.7) we recover the relation (/6.3.2):

- = —C"|A0| (16.3.8)

where |A|" = A A%
Note: Following from the definition of the Poynting vector as the energy density flux of the radiation, the inten-
sity / is the energy per unit area per unit time, which propagates along the k-direction. This quantity can also
be associated with the number of photons (i.e., the number of energy quanta of magnitude £ = A®), which
propagate along the k-direction. Using (/6.3.6), we find that the flux of photons (i.e., the number of photons
per unit area per unit time) is given by
/ w 2
F=go = 2n_fw|A°| (16.3.9)

16.4. An atomic electron of mass m, charge e = , and spin § interacts with a monochromatic radiation
field of angular frequency @ = ck. The Hamiltonian of the system is

e e . -
H=Hy+H(t)=Hy-7=A -p-—(VxA)-S (164.1)

where H'(f) is a small perturbation (the low-intensity limit). The vector potential A (r, t) is given by
the following plane-wave;
A(r, 1) = 2JAg|€ cos (k-r—wr+8)
= AgEexpli(k-r—-own] +Afeexp[~i(k r-wr)] (164.2)

0 . - . . o . .

where Ay = [Ag|e” is a complex number, € is a unit vector in the direction of polarization, k is the wave

vector, and € - k = 0 (transversal gauge). Let i) and | f) be two eigenstates of the unperturbed Hamil-

tonian HO' which C“!TCSWP"I to the encrgy levels E! and E_, respectively (E = E ). Assuming that the
is

respectively (E # E.). Assumin g that tf
perturbation H(t) isturnedonat r = 0, calculate the probability P;(/) for resonant transition Ji) — |f).

We consider the Hamiltonian in ({/6.4.7), and treat H'(¢) as a small time-dependent perturbation. If the system
is initially in the state |f} and the perturbation is turnedon at ¢+ = 0. the first-order amplitude for finding the system
instate |f) at £>0 is given by

! ’

it : . e @, t - .
a (1) = :ﬁJ. T flH@N = == | e (FIAG. ) p+S- [VxAr, DI dr (16.4.3)

0 0

with 2w, =E,-E, (see Chapter 10). Substituting A(r, #) from (/6.4.2), and integrating over dr, we

obtain
t
(1 ie 1w, -0} IA ik r oA 'S A l
a () = 7| ¢ (flAge” 1€ -p+iS- (kx£€}]|)
0
+e (| A%e™ TR - p-iS- (kxE)]]) }d:‘ (16.4.4)
Therefore,
(M _ e w)'_]'r ?‘-(wfﬁw“—lT_/: (16.4.5)
% = -~ w,~® A o +0 & 4
where we define
Ty=- <f| A E p+iS- (kxE )|

(164.6)
Tf:g_m—e-c(fl el 'A*[e p-iS- (Kx€ )]|i)
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Equation (/6.4.5) contains time-factors of the form (see Fig. 16.1)

i(mfxi(x))f_ i a2 sin[((nf,-:t(l))l/Z] ;
—————mﬁ i([) = Je ((Df' i(n) /2 ( 64.7)
sin [(mﬁim)rﬁl w>0
—"(mﬁ+m)/2 A=drn/t
1 (
r ———————————————
] (
] |
] (
: :
A A
] 1
AL Wal BE Wall
- o QJ/ on
2r/t
Fig. 16-1

2
Consequently, the transition probability P (1) = |aj(,“ (t)| is appreciable only if |0-w,|<4n/t=A (or if
|+ @y| <A). In this case, and for A « 2|y,

. one can neglect the interference term of P (1) and distinguish

between two resonant transitions:

i. Absorption (@ >0):

] [ sin [ (@ - @)2/2] 12
Pf,(f) = L« l (0, —@)/2 J {164.8)
h 1
ii. Induced emission (@, <0):
|Tf;|2 { sin [ (@, + ©) 1/2] }2
Pff(’)z_",:i* (@, +w) /2 (164.9)

Note: It is worthwhile to emphasize that the resonance approximations in (/6.4.8) and (/6.4.9) are only valid under
two conditions:

i. P(1)«1 (applicability of first-order perturbation theory).

. 2% . .
if. = « |(oﬁ{ =  (no interference term in P[,(t)).

A bounded spinless particle of mass m and charge e interacts with a nonmonochromatic field of radiation
that covers a spread of incoherent frequencies in the range @ + 3w/2. The particle is described by the
Hamiltonian H = p2/2m +V(r) and the intensity of the radiation is given by ! = cu(w)d
where u(w) is the energy density per unit angular frequency (see Problem 16.3). Consider the transition
probability Pﬁ(t), where |i) and |f) are two eigenstates of the unperturbed Hamiltonian /. (a) Show
that the transition rates, for absorption and for induced emission, are given by

abs 4m’eu ()

ik-ra ~|2
W, = EYE (Dj% 1(f|e+ ‘£ -plz)l for E.>E, (16.5.1)
22
ind _ 4m e U () —ik-ra NE
Wi = el l(rle™ m - plal for E,>E, (16.5.2)

fi
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l\;v};ere hw,=E~E,, and k| = [u)ﬁ[/c. (b) Assume that E,>E;, and verify the principle of detailed
alance:

wf‘"’bs = W"’d (165.3)

(a) We assume that the radiation covers a spread of frequencies with no phase relation between different frequency
components. Treating each frequency component separately and using the results of Problem [6.4 we obtain

sin [ (o, + ) 1/2] :
(1654)

()l +k- rA 2
SPL() = 22ﬁzl<f| plz)l{ (£ @)/2

where the plus/mmus signs of &P (z) correspond to absorption and induced emission, respectively. The total
transition Pf, (#) is then found by replacmg |A0| in (16.5.4) by the relation (16.3.2):

2 _ 2nc’l _ 2re %u()

|Ay| s e (16.5.5)
and summing over all the incoherent frequencies in the range © + dw. Thus,
2
5t 2né’ o 4oy ESCL)I zik T2 Nk Jsm ( (0, + w) ’/2]1. S
Fplt)y = m2ﬁ2L o I(fle pll)[ l (0, £ ) /2 J (16.5.6)
.15}

where |k| = w/c. The time factor in (/6.5.6) has a sharp peak at w = *wy,. Therefore, we can replace the
summation over 3w by an integral and extend the limits of integration to tee. This gives

{sm[(u) im)t/Z]}
(0,2 0) /2 do (16.5.7)

21t€ M((.O) tik - r,\
rel] e (02

S = pli

~o0

The last term in (/6.5.7) can now be replaced by mrd [ (mﬁ + w) /2] . Hence,
4n’e’t [ u{w) 2
P; 0 = WJ ?"|(f|et'k'ré ~pli)l 8 (0, t 0)do (16.5.8)

—oo

Finally, the transition rates, W; (n= dP; {r}y/dt, are given by

P a0 | e 1L
Wb o L2 (Fle™ & - pliy for @, >0 (16.5.9)
fi dt 2 U‘)err' fi
‘ dP (1)  4n’e’ uloy)
ind fi rf -ik A
e e [ Fle™ p]:> for @, <0 (16.5.10)

where fiw, = E,~E, and |k| = |a,]/c.
(b} We consider the transitions i) <> |f ), where E,>E,. Using expressions (/6.5./) and (/6.5.2), we find

a2 2

abs 4nle’ u{wy, . NG
Wy = Y '(ﬂe' ¢ - plol (16.5.11)

in 47!282 “( (.l)ﬂ) A =tk -§n 2
Wy = h W le™ & - plr)l (16.5.12)

i

The matrix element in (/6.5./2) can now be written as

—ik r - A W F A —ik rt].

Gle™ e plry = (lie™ @ mrln" = ¢l p ™ (16.5.13)
where T denotes the Hermitian conjugate operator. However, k-€ = 0and consequemly[é p.e™ ] = 0.
Hence,

) ket o* A ik r|. th ra .
rl@ e 0" = (e b e 0T = (sl e ol (16.5.14)
where [em‘r]* = ¢ " has been used. Finally, we obtain
(ile™ & plpy = (le* e pliy* (16.5.15)

ind

abs
Therefore, W, = W .
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16.6. Consider the matrix element Tff ={f ieik r [£- p+iS- (kx§) ]‘i), for a one-elecitron system in a
linearly polarized radiation field. Prove that in the long wavelength approximation, T, is given by the
following multipole expansion:

me
+ .

TE = imw, (fle vl +5CFlL+28) - (kx&)|D-—2(flk-r) (& -nli 661

where £ is the unit polarization vector, k is the wave vector, and L = r x p is the orbital angular
momentum. The three terms in (/6.6.1) correspond to electric-dipole, magnetic-dipole, and electric-

quadrupole transitions,
In the long wavelength limit, exp (ik-r) = | +ik-r+--.. Therefore,

Ty=(flE - ply +i(f1S- (kx € )|y +i(fl(k-r) (€ - p)li) (16.6.2)
However, k- £ = 0, sothat k- r and € - p are commuting operators that satisfy the relation

(rxp) - (kx€) = (k-r) (E-p) - (E-r) (K-p)
Thus,

2(k-r) (E-p) =L (kxe)+ (k-r) (E-p) + (E-1) (k- p) (16.6.3)
where L = r X p. Substituting (/6.6.3) in (16.6.2) gives
£ Ll N .
= (18 ply + 5L +28) - (kx&) [ +5(fl(k-r) (& -p) + (k-p) (& -I)]D) (16.6.4)
Therefore, in order to obtain (/6.6.1) we only have to verify the following matrix identities:

{ (FIE Pyl = imay, (fI(E -r)]i)
(Flk-n) E - p+ G ) (k-pli) = ima(fIk-r) & -0 (166.5)

To that end we recall now that |i) and |/ ) arc cigenstatesof H, = p’/2m + V(r) and choose our coordinate system
so that the vector € is on the z-axis and the vector k is on the y-axis. In this case,
l R ih
[e r,H] = [z,H] = ﬁ[:,p‘] = P- (16.6.6)
and
th
[k-r Hy) = [yz, H)) = — (3p.+p,7) (16.6.7)
Furthermore,
(fllz, Hyl|y = (E -Ep (flzlD) = —hw, (fl=]i) (16.6.8)
(fllyz Hyl|iy = (E,-Ep) (flyzli) = oo, { flyzli) (16.6.9)
Hence,

{

{ (flp]) = imay, {fiziny
(f| (yp.+p,2) |1) = imu)f,(f|_vz|z')

which, for £=7%and k = k¥, coincide with expressions (/6.6.5).

(16.6.10)

16.7. Find the selection rules for emission and absorption of (a) electric-dipole radiation, (b) magnetic-dipole
radiation, and (c¢) electric-quadrupole radiation, by an electron in a central potential.

{ay Electric-dipole transitions: To obtain the selection rules for electric-dipole transitions we consider matrix ele-
ments of the form {f[x|7), (f|¥i), and (f]z|r) where |i) and |f) are eigenstates of an electron moving in a

pantral antantiol Tha nnnastnrhad woova Fiinntian o th H
Lyl al I)Ulclltlal. 111v lll}cl tuiIoy vwwavo LUulivLiull 1y o EIVUII Uy

|l> = Inn ljs mj> - Wnr[‘m' = Rnl[‘ Y]:"[ (9, q))
) (16.7.1)
)=lnplom) = ¥, =R, ¥, (8.0)
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where Y,m (6, ¢) are the spherical harmonic functions. In this representation,

xtiy=r sinfe™™® = JErY (0, 9)

i (16.7.2)
Lz = r cos@ = J?nrY?(G)
Therefore, the matrix element { f|z|{) is proportional to the angular integral
%
J( Y,f) (8,0) ¥ ()Y," (8, 0) 4Q (16.7.3)

which is different from zeroonly if A/ = {,—/ = +1 and Am = m;~m, = 0. Similarly, the matrix elements
(flx|®) and {fly|é) are proportional to linear combinations of the form

J( yf;f) (6,0)Y(8)Y," (8, ) dQ2 (16.74)

which are different from zero only if A/ = *1 and Am = =1. Grouping these results together we finally
obtain

Al =11 = %l
Am = me—m; = 0, 1 (16.7.5)
Magnetic-dipole transitions: The selection rules for magnetic-dipole transitions are found from matrix ele-
ments of the form (f|L|#), (f|L,|D, and (f|L_|/). From the general properties of angular momentum (see

Chapter 6) we immediately find

(L +ILY|D = {n LomiL |a, 1, m) ~ 8, ,,8," . (16.7.6)
(L =il )|y = (ny by m)L [n, 1, m) ~ 8,,8,” o (16.7.7)
(fIL |y = {n bym L |n, 1, m) ~ ﬁm,S”Smm (16.7.8)
Therefore, the magnetic-dipole matrix elements vanish identically unless
Al =1-1 =0
{Am = m-m, = 0, (16.7.9)
Note: In the presence of spin, one also obtains Am_ = m  —m, = 0,%1. However, this selection rule is triv-

ially satisfied by spin 1/2 particles.
Electric-quadrupole transitions: For electric-dipole radiation, we have to calculate matrix elements of the
products Xz, yz, and zx, We note, for example, that yz can be expressed as a linear combination of
r Y {6,9) and r Y ' (8, ¢) . Therefore, the matrix element { f|yz|) contains angular integrations of the form

("m,r\*.n sl A o oy e re o o1n
Jk"f)w‘ ¢) ¥, (8)Y, " (8, ¢) dl (16.7.1G}

These integrals are different from zero only if A/ = 0, 2 (excluding the case /, = /; = 0)and Am = *1.
The last condition becomes Am = %2, +1, 0 if one considers arbitrary polarizations. The electric-quadru-
pole selection rules are then found to be

{AI =l—1 = 0,12

Am = mf_mi = O,i],:tZ (16711)

where the case of /. = [, = 0 is excluded.

Notes: (i) The electric-dipole interaction i1s an odd operator, which connects only states of different parities.
Since the parity of Jalm) is given by (—!}’ Al muct be odd in accordance with (16.7.5). (ii) The magnetic-
dipole and electric-quadrupole interactions are even operators that connect only states of the same parity. This
is, again, compatible with (16.7.9) and (J6.7.11). (iii) The magnetic-dipole and electric-quadrupole transitions
are never in competition with the electric-dipole transition. (iv) For A/ = 0 and Am = 0, 1, thereis a
contribution from both the magnetic-dipole and the electric-quadrupole interactions. However, for Al = 2 we

have pure quadrupole transition.
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An isotropic three-dimensional harmonic oscillator of mass m, angular frequency ®,, and charge e is
placed in a linearly polarized field of radiation. Calculate the probability per unit time for resonant tran-
sitions of frequency @, = ®, and ©, = *20,,.

Let us choose a coordinate system such that the vector € is on the z-axis and the vector k is on the y-axis. The
transition rate, for absorption {and for induced emission), is then given by

22
Ane” u(wp) e | )2
= '——zﬂ ‘(n onl, nfle”“ /’:l”'v ., n':)| (16.8.1)

¥ N

HT 22
mht o,

where |r,, n,n.)and E =fiw,(n, +n,+n,+3/2) are the eigenstates and eigenvalues of the unperturbed

NN
vy o

harmonic oscillator. Using the results of Chapter 5, we find

mho
pla,n,ny =i /T”[ [n.+ ln,n,n +1)- Jn—:|n‘, n,n.— l)]

(16.8.2)
kyln,n,n) = k’\/%{ ,\/ﬁln\, no+l,n)- «/"_v|"..’ n,— 1, ":>J
Therefore,
(nf,nl nlle™plnl nnly = (nl|n (1 + Ry 4 o) Inl) (allp | nd) (16.8.3)

where the higher terms of order fz(x)”/m(-1 « | have been neglected. Note that these terms are important only for
high-order transitions in which @, = 3, 4@,,.... Expression (/6.8.3) is different from zero only if

An =0, An =0,21, and An. =%l (16.8.4)

In particular, there is no competition between the electric-dipole (An, = 0) and the electric-quadrupole transitions
(An, = *1), The energy difference for each transition is @, = ®, (An, + An_+ An.) . Thus,

fi
[ ——
mhw
. o [
1J 5 Jnt+1 for 0, = o,
173 ' +
(n‘{, n{., n__’ e “p: nl,n, n. (16.8.5)

Ay =
- k[ )
I 7\/11: + 1 yn' +1 for oy, = 2m,

Finally, substituting (/6.8.5) in (/6.8./) and using the relation & = /¢, we obtain

u( W) .
mfm)" (n_+1) for ®, = 0,
22
le = 2Mme X H((D()) (1686)

e (n.+ 1) (n 4+ 1) for w, =20,

Note that for the same incident intensity, W (2w,) /W (@) ~ ﬁ(x)(,/mc-z.

A two-level system with eigenvalues £, > £, is in thermodynamic equilibrium with a heat reservoir
at absolute temperature 7. The system undergoes the following transitions: (i) absorption 1 — 2,
(i1) induced emission 2 — 1, and (i1) spontaneous emission 2 — 1. The transition rates for each of
these processes are given by

abs

W, = P Byu(my)

nd
Wi = PuBu(0,) (169.1)

spon
t Wi =Py,
where u(®,,) is the energy distribution of the radiation field, P, is the probability of finding the system
in level j of degeneracy g;(i=12), and A}, and B, are the Einstein coefficients for spontaneous
and induced emission, respectively. (@) Calculate the probabilities P| and P, under equilibrium condi-
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tions. (b) Use (16.9.]) together with Planck’s formula for black body radiation to show that
ngle = 8,B),

3
hm;, (16.92
21 1

[A 2= T7.3Bn
T

(a) Under thermal equilibrium at absolute temperature T, the probability of finding a system in one of its stationary

states {f) with an eigenvalue g, is proportional to the Boltzman factor ¢ *"*T In this problem £, assumes the

values €, = £, E, withrespective degeneracies g, = g,, g, (atwo-level system). Therefore,

PI = Cgle-lfl/l(T

(16.9.3)
P, = Cg,e BT
where (' is the normalization constant. Since P + P, = 1, we immediately find that
€= g e Ty g e Y (16.9.4)
Since E,- E, = fiw,, we have
Lo _ & oy (16.9.5)

f_’; T &
(b) Suppose that a larger number of systems, such as in part (a), form a closed cavity that is kept in equilibrium
with its own thermal radiation at constant temperature 7. In this case,

Wal = Wi s w2 (169.6)
Therefore, from (16.9.1), we obtain
P B, u(w,) = P,Bu(w,) +P,A, {16.9.7)
or equivalently, by using (16.9.5),
[gleﬁwm/”le -8, Bplulow,) = g4, (16.9.8)
The thermal radiation inside the cavity is distributed according to Planck’s formula:
3
ww) = (::i"m.,‘_ - (16.9.9)
Therefore, (16.9.8) takes the form
3
giBa (o - f;,f—ij)iufi = gy (¢ 1) (16.9.10)
Hence,
{ngzl = 8,8,
i ha), (16.9.11)
Ap = nzczBlz

16.10. Calculate the Einstein coefficients, A, , B, , . and B, for an electron moving in a central poten-
tial. Recall that 1s = (n=1,/=0) and 2p=(n=2,1=1).

Let us first consider the probability per unit time for the transition 1s — 2p (absorption). Since the states 2p
are degenerate with respect to the magnetic quantum number, we have

41'51 pd i
Wapts = g u(oy) 3 (Um0 = B, () (16.10.1)
m=-1

However, \ 5
Ntk omielatm) = (5 1[G 5 1blnD)] (16.10.2)
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and
Z|((n',l— Loy felnlmd) = 1(n, 1= tirind)? (16.10.3)
Therefore, substituting / = 0 in (/6./0.3) and using ({6.70.7), we obtain
22
4 e
Bayr, = —or 1211 10)) (16.104)

0

where (21|/10) = j R;; (r rleO(r) dr is the radial integral. The coefficients for the transition 2p — ls
¢

(emission) are found by setting g,, = 1 and g,, =3 in (/6.9.7/). This gives

ar’e’
B,.,, = ——7|(10l42D)°
1s2p 9fL2 ( >|
R “(16.10.5)
A = 10{A21
2y = gl 100A2D)
Find the probability per unit time of spontaneous transition for a hydrogen atom in the first excited state.
The probability per unit time for the transition 2p — 1s (emission) is given by
thp = u((x)zl)BIs2P+A|"2’, (l16.11.1)
Thus, using (/6.70.5), we obtain
[ o Reg | a2 i 1o
Wisap = e Lu(wz,) + n2C3J|(lUU|r|zlm)| (16.11.2)

where [21m") is one of the three 2p states. In particular, for the hydrogen atom in the first excited level,

2

1 5
[(100lr21m))” = 31C10142D)1" = Fa, (16.11.3)
where a, = fi*/mé* is the Bohr radius. Therefore,

20(’2“’321 5 20 (1)?,_1 2 %Q%ﬁ_z

Ath = ﬁ?ga = ﬁa?a0= 53 7 mza (16.11.4)
where o = ¢/ fic = 1/137 is the fine structure constant. However,
3¢ _3@md
hwy = 2a, ~ 4 2 (16.11.5)
Hence,
20 ﬁm('z 5 3 _8 1
Ay = gﬁ;a’ T T g0, =625 10 “sec (16.11.6)

Expression (16.17.6) leads to a radiative lifetime of the order 1.5 x 107 sec.

A linear harmonic oscillator of mass m, angular frequency ®,, and charge ¢ is excited by a nonresonant
radiation field of the form
2A,2 cos (ky—wr) >0
A(r,t) = l 0 1 <0 (16.12.1)

where @ # ®,. Let |n) and E, = fiw, (n + 1/2) be the eigenstates and the eigenvaiues of the oscillator,
and let [y (7)) be its time-dependent state vector in the presence of radiation. (@) Use first-order pertur-
bation theory to find an expression for |y (t)). Assume that initially |y (r = 0)) = |0). (b) Calculate
the induced dipole moment that is proportional to the amplitude of the external electric field.
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(a) The time-dependent state vector can be written as

ly (o)) = e"'E"’/ﬁ|0>+Za,,(t) "5 (16.1222)
nz0
where a,(¢) = 0 for r<0. Using first-order perturbation theory (see Chapter 10) for H' (t) =
[ 4 .
_m_cA {r,t) - p, we find
3
1 i ' e i .
a:') (1 = z_ﬁj e (nl H'(#)|0y dr = mj '“’"“'2,40 cos (ky —wt) {n|p,|0) dr (16.12.3)
) 0

Therefore (see Problem 16.4),

(W - @) + L, 5+ )t -
m e 1T,y o T 1T,

I e PRI 3 (16.124)
where
[ e L. e®,y
Tnos—m—c(n,Aoe’kypz'O) = ————Ae "(nlez|0)
iew {16.12.5)
- e iky nl -tk
Tho= - (nAge™p[0) = ——"24,e™ (nlezl0)

Finally, multiplying the ket [y (z))} by a global phase factor ¢'£0"*, we obtain

(D)) = hw(n)ef™® = I0>+an(t) In) (16.12.6)
nz0

where the coefficients b, (t) =a, (1) e " are given by (16.12.4):

it & T fwi i f T
eluu_enuz”n 1’, e _e 0 Tno

b () = - 0. -0 7 AT Y (16,12.7)
(k) The induced dipole moment is given by (D (1)} = (\Il (1) Iezl\;t (t)). Thus, up to the first order in A,, we
find
(D () = (0lezl0) + Db, (1) (Olezln) + 3 b% (1) {Oleiny (16.12.8)
nz0 nzl)

Next, we substitute the coefficients b, (7} from (/6./2.7) and neglect all the terms that oscillate at frequencies
1w, ;. (These terms disappear in the limit 1 — o= due 1o the finite lifetimes of all the excited states.) This

gives
2 T: (Olezlmye™  T: (Olezln)ye™
(D)) = {Olez|@) -3 Rejv{ o (Olezln) + o {Olezln) u (16.12.9)
o R (&t Oy-@ 0,,+0 ]|
nel
namely,
2A0 5 e-l(ky—(nl) e-i (ky - o)
(D) = (OIEZIO)-H2|(0|€2|’1>| ®,, Im|: oo + ‘D,.o"'mi| (16.12.10)
nzd
. . 19A . .
Finally, since E = 7 = —2A4k7 sin (ky — or), we obtain
T —— 1/t a2
2, Glezin
(D(1) = (0lel0) + 5 Zi;—e'——z'—mno (16.12.11)
®,,—®
nz0

In particular, for the linear harmonic oscillator, expression (/6.12.11) is reduced to the classical formula; i.e.,

2
€

-

0

(D) = (16.12.12)
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16.13.

16.14.

16.15.

16.16.

SEMICLASSICAL TREATMENT OF RADIATION [CHAP. 16

Supplementary Problems

Refer to Problem 16.4 and find the transition rate W, (probability per unit time} for the transition from the initial
state |i) to a continuum of final states of energies E y + dE f/ 2 (Fermi’s golden rule).

LD 2 Ar Pt = £, + 4 E) = dN,/dE, i ity of fi
Ans. Wy = o =T {FIT | P(E; = E, + hw), where p(E;) = dN,/dE, is the density of fina] states and

T;, is given in (16.4.6).

Find the transition rate for absorption and for induced emission of electric-dipole radiation by a one-electron system
in an isotropic radiation field. Hint: The transition rate is found by averaging the electric-dipole matrix element over
all the possible directions of polarization.

22
Te

W, =
fi 3ﬁ2

Ans. u( o) |(FIFl)[, where [(FIn[D = (FIrli) - (FIrli)*.

The oscillator strength of a transition |k) — |n) is defined as
fo = o+ L+ o= 2mo,/h) Knld ) (16.15.1)

2

where |n) and |k) are eigenstates of H, = 2P_m + V (r). Show that f,, satisfies the sum rule Efﬂ,( = 3.

n

In the presence of a spin-orbit interaction, find the selection rules for emission and absorption of (a) electric-dipole
radiation, (b} a magnetic-dipole radiation, and (¢} electric-quadrupole radiation. Note that the selection rules can be
obtained by expanding the stationary states |I5; JM,) in terms of |im) ® |Sm_), where J = L +§.

Ans. (a) Electric-dipole transitions: Al = +1, AJ =0,%l, AM,=0,%1.

(b) Magnetic-dipole transitions: Al =0, AJ=0,%1, AM,=0,*I.
(c) Electric-quadrupole transitions: A/ = 0,2, AJ=0,%1,12, AM, =0,+1, +2.
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Mathematical Appendix

A.1 FOURIER SERIES AND FOURIER TRANSFORM

If f (x) is a periodic function with a fundamental period L, then it can be expanded in a Fourier series:

fox) = Z a, e (Ad)

n = —oo

where k, = 2nn/L. The coefficients a, of the series are given by
I
1 —ik x
a, =71 f{x)e " dx (A.2)
0
The Fourier transform of a function f (x) is defined as

1 ~ikx
F(k) = F[f (x)] = EJ fye ™ dx (A3)

while the inverse Fourier transform is

1 ikx
fx) = EJ Fie™ dk (A4)

Notice that in quantum mechanics we define the transformations slightly differently, as follows:

oo

1 —ipx/h
W(ky = F = ———J PR dx AS
(k) (w(x)] m y(x)e (A.5)
and
1 ipx/h
= == | ¥ke " "dk :
Y (x) mf (k)e (A.6)
Two formulas of Fourier transform theory are especially relevant.
Identity of norms: Fo dx = I IFto|* dk (A.7)
[
Parseval’s theorem: f(x) g¥(x)dx = J F(k)G*(k) dk (A.8)
o
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A.2 THE DIRAC 8-FUNCTION

The Dirac d-function is defined by the relation

oo

r
) rmse-xpdr = £

Some important and useful properties of the d-function are given below:
d3(—x) = d(x)
1
O(cx) = Eﬁ(x) for ¢>0

x&(x —xp) = xy8(x—xp)
Note that x 8 (x) = 0. Also,
F)d(x—xy) = fxg) dx—xp)

1
dx*-c?) = Z—C[B(x—c) +0(x+¢)] forc>0

1
ﬁff(x)] = Zf'(xi)a(x_x")

where x; are simple zeros of the function f (x).

[ S(x—x))d(x~x,)dx = &(x —x,)

—o0

We define &'(x) by the relation

j fx) & dx = ~f'(0)

Some properties that are connected to §'(x) are given below:
§(—x) = -8

8" = -1)"8"(n

xﬁ(n)(x) = -n 8("_”(x)

f F) 8wy = (-1)"F"0)
The 8-function in three-dimensional space is defined by

J-f(r) 8(r—ry)dxdydz = fir,)

where d(r —ry) = d(x ~ x,) 8(y — y,) 6(z - z,). In spherical coordinates (r, 8, ¢) we have

d(r—ry)

i

5. . 0(r—r,) 8(8 -8y 30—y
r°sin

1
;} &(r — ry) 8(cos 8 — cos 8,) 8(¢ - §,)

[APPENDIX

(A.9)

(A.10)

(A1)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
(A.19)
(A.20)

(A21)

(A.22)

(A.23)
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The integral representation of the d-function is obtained by using the definition of Fourier transform [see Sec-

tion A.1], so that

oo

1 f

8(x—xo) = EI_tJ eik(I—X")dx

—ao

The step function 8(x) (also called the Heaviside function) is defined as

1 for x>0
8 = 10 for x<0
The relation between 8(x) and 8(x) is

dB(x)
dx

8(x) =

Finally, we mention an important relation for (r):

Vz(%) = —4nd(r)

A.3 HERMITE POLYNOMIALS
The Hermite polynomials H,(x) are defined by the relation

n

The H,(x) are the solutions to the differential equation

d'H (x)  dH (x)
dx? ~? dx

The orthogonality relation for H (x) is

+2nH, (x) =0

J e H (OH (x)dx = Ja2'n's,,

(& o)
2 2
H(x)= (-1)"¢" e n=0,12,...

Two important recurrence relations for H (x) are
dH (x)
P 2nH, (x) H, (x}) = 2xH(x)-2nH,_,(x)
The first few Hermite polynomials are given below:
Hyx) = 1 H(x) = 2x Hyx) = 4x*-2
Hyx) = 8x° - 12x H,(x) = 16x* —48x7 + 12

A4 LEGENDRE POLYNOMIALS
Legendre polynomials P, (x) are given by Rodrigue’s formula,

(A.24)

(A.25)

(A.26)

{A.27)

(A.29)

(A.30)

{A.31)
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The first few Legendre polynomials are given below:

1

Py(x) = 1 P (x) =x Py(x) = 5(3x*-1)
1 1

Py(x) = 5 (5x"=3x) P(x) = 3(35x* ~30x+3)

In terms of cos 8 the first few Legendre polynomials are

Py(cos0) = 1 P, (cos8) = cos O

i 1
P,(cos 0) = 7 (1+3cos 208) Py(cosB) = §(3cose+5cos 360)

The orthogonality relation of the Legendre polynomials is
1

2
J P (x) P, (x)dx = mﬁ,,. (A.32)

A.S ASSOCIATED LEGENDRE FUNCTIONS

Associated Legendre functions P;" (x) are defined as

n md”
Pl (x) =d(1-x) P for —15x<1 (A.33)
X

where m 2 0. P, (x) are the Legendre polynomials. Note that

Pl(x) =P,(x} P} (x) =0 for m>Ii (A.34)
The differential equation that P;" (x) satisfies is
5 d’ d m? m
(l—x)@-2xa+[l(!+l)—l_fﬂ}’, (x) =0 (A.35)
The first few associated Legendre functions are given below:
Plxy = J1-2 Pr(x) = 3xd1-2 Plx) = 3(1-2)

Py (x) = %(53_1%/1_2 Pi(x) = 15x(1~4) Pl(x) = 15§ (1-2)"

The orthogoenality relation of the associated Legendre functions is

1 n
o 2 (d+m)! e
J 1', (x)t', (x)dx = J r, (coqmr, (cos 8)sin9d 6 21+1‘a7),0,, (A.36)

-1 0

A.6 SPHERICAL HARMONICS

The spherical harmonics are defined as

m 20+ 1 (-
Y, 8,0) = -n" } 4; %ZT%P, (cose)e”"q’ for m=20 (A.37)

Y., ) = (<" [¥]®, )] (A.38)

The differential equation that ¥ ,'" satisfies 1s

and

1 3 9y 1 &
Lmeae(s"‘ ae) SinZ 0 ¢2+’(’+1)]Ym(9 0) = (A.39)
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The Y;" have well-defined parity given as follows:
!
Y{(m-8,m+¢) = (—1)'Y(8, 0)

Tha nrthanAaemalizotinn ralatinn ~AF V 10 wmmigfan oo
1IIC viluuiluvl iiialliLativil 1vlauiuinl vl 1 , 1d wWillllvil ad>
2n 4
m
j d¢j [Y]'(8, 9)] Y} (8, ¢) sin 04 = 3,3 .
0 0

and the closure relation

oo i
1
2 2 Y;n(ﬂ,d))[Yr(e',q)‘)]* = 8(cosB-cos8)B8(p-0¢) = Sineﬁ(g_g')5(¢_¢-)

I=0m=-1

Some important recurrence reiations are given below:

m+ 1

ei¢(\%—mcot9)Y;ﬂ(9,¢) f(l+l) -m{(m+1)Y, " (8, ¢)

o 9 e
e ¢(—%—mcot9)ﬁ'(6,¢) = JI0 D) —m(m=-D Y, '8, ¢

(I+1+m) (l+1—m)Ym (I+m) (I-m)

Y@ 9)cos8 = gy et Qe ) 2=

m
Yl—l

The first few Y;" are given below:

Yﬁ:L
Jar
Y(l)= A/427[(:056 Y: =—A/g sin e'*
Yg= %(3&)526—1) Y;=—“/Egl—?tsinﬁcosE)ei‘IJ Y2 Esmzﬂe
Ygz %{(500539—3&59) Y;: Esme(Scosze—l)e

S
§= {;25 sin? 8 cos Be” Yiz }6?:1 sin?9e”'?

An important result for spherical harmonics is

L
P (cosa) = ; L( DY (8,0 Y (8,0,

m=—1
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(A.40)

(A4])

(A42)

(A43)

(A.44)

(A45)

(A46)

where @ is the angle between the directions (6, ¢,) and (8,, ¢,). This result is known as the spherical har-

monics addition theorem.

A.7 ASSOCIATED LAGUERRE POLYNOMIALS

First we shall deal with the Laguerre polynomials given by Rodrigue’s formula,
N
d
L (x) = — (xle™)
e dx!

The associated Laguerre polynomials are defined as

m

m d
Ly (x) = @L,(X)

(A47)

(A48)
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where / and m are nonnegative integers. Note that

L) (x) =L,(x) L)(x)=0 for m>1 (A.49)
The first few associated Laguerre poiynomiais are given beiow:
Li(x) = -1 Ly(x) = 2x—4 L5(x) =2
Li(x) =32+ 18x— 18 Li(x) = -6x+18 L(x) = -6
The orthogonality relation of the associated Laguerre polynomials is
- (b’
xe L, (x)L, (x)dx = m&,l. (A.50)
0
A.8 SPHERICAL BESSEL FUNCTIONS
Bessel’s differential equation is given as
2 4 i d 2 P2
x;;+xa—,;,+(x - =0 (AS51)

where /2 0. The solutions to this equation are called Besse! functions of order /. J (x) are given by the series
expansion

J(x) = — % 1 — X + x* —| - % (—l)k(x/2)’+2k (A §7)
R 2’r([+1)L‘ 202/+2) " 2-421+2) (2U+4)]  Lw n!T({{+k+1) iatd
R=90

If1=01,2,...,J,(x)= —1’],(x)_ If 1#0,1,2,...,J(x)and J (x) are linearly independent. In this case
Ji(x) isbounded at x = 0, while J_(x) is the unbounded Bessel function of the second kind. N ,(x) (also called
Neumann functions) are defined by

Jy(x) cos (Im) — J_,(x)
Nyx) = sin ()

(1#0,1,2,...) (A.53)

These functions are unbounded at x = 0. The general solution of (4.57) is
{y(x) = AJ(x) + BJ ,(x) 1#0,1,2,...

Y&) = AL + BN ) all £ (A54)

where A and B are arbitrary constants. Spherical Bessel functions are related to Bessel functions according to

jix) = &Jh 2@ (A.55)

Also, the Neumann spherical functions are related to the Neumann function N ,(x) by

n(x) = J;EN1+1/2 (x) (A.56)

h® = (-0 '(J;a,%)l( ﬂ;—x) (A.57)

neo= -0 (32 (25) 35)
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The first few j, (x) and n, (x) are given below:

. si X CcoS x
Jo (x) = X ny (x) = - X
. SINX COSX COsSX Ssinx
J (x) = - n (x) = - - —=
L o X ! 2 x
(X) ( 3 1)s'n 3 CcoS (x) ( 3 l) 3
=|——=|sinx—— X n = - ——=-]cosx—"3S8Inx
J2 3 $2 2 3 oX <2

The asymptotic behavior of the j, (x) and n,(x) as x — o and x — 0 is given by
t

. X
X Lo BT+ D1

(2= 1)1t (4.59)
"I(x)x——)()—-')— P+l
X
( ] 1 ) 7 7{!\
j,(x)x_m——);smLx—?}
(A.60)
i

1
n(x), 5. —;cos(x— 7)

where (20+ 1)1 = 1-3-5...(21-1)(2[+ 1).
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Absorption, 288
Aharonov-Bohm effect, 172
Angular momentum, 98

algebra of, 99

addition of, 236

matrix representation of, 101
Approximation

long wavelength approximation, 294
Associated Legendre functions, 304

B
Barrier potential, 201
Basis, 12
continuous, 54
discrete, 53
orthonormal, 99
standard, 100
Bessel function, 258, 306
Bisection method, 215, 220
Black body radiation, 1
Bohr
angular frequency, 177
magneton, 254
radius, 142, 203
hydrogen atom, 7
Bohr, Niels, 3
Bohr-Sommerfeld quantization rule, 201
Bolzmann constant, 8
Born approximation, 257-259
Bosons, 229
Boundary conditions, 31
Bra, 50

C
Clebsch-Gordan coefficients, 237, 248
Closure relation, 53, 60
Coefficient
reflection, 24
transmission, 24
Commutation relations, 98
canonical commutation relations, 56
Commutator, 52
Commuting operators, 52
Complex conjugate, 11
Compton effect, 1, 3, 6
Conditions
matching, 34
Constants
Bolzmann, &

Index

fine structure, 298
Rydberg, 8
Continuity equation, 155
Coulomb force, 3
Coulomb potential, 257
Cross section
differential, 256
Rutherford, 262
total, 256

D
De Broglie, 3
relation, 3, 4
Degeneracy
accidental, 143
essential, 143
Dirac 8-function, 15
Dirac notation, 50
Distribution, 15
Duality
of light, 2
of matter, 2

E
Ehrenfest
equations, 77
theorem, 27, 31, 33
Eigenspace, 51
Eigenstate, 33
Eigensubspace, 59
Eigenvalue, 13
Eigenvector, 13
common, 52
Einstein coefficients, 288
Einstein, Albert, 1
Electric-dipole moment, 196
Emission
induced, 288
spontaneous, 288
Euler method, 216
Exact ground state, 196
Expectation value, 89
Experiments
doubile-stit, 2
Franck-Hertz, 3
Stern-Gerlach, 122

F

Fermi’s golden rule, 178, 287
Fermion, 229
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Form factor, 262 Legendre functions, 100, 303
Fourier Legendre polynomial, 303
coefficients, 14 Lennard-Jones potential, 94
series, 14, 20, 301 Linear operator, 12
transform, 14, 19, 20, 301 Logarithmic derivative, 259
inverse Fourier transform, 301 Low intensity limit, 286
Franck-Hertz experiment, 3
M
G Magnetic flux, 170
Gauge, 154 Magnetic moment, 155
Coulomb, 286 Maxwell’s equations, 154, 156
Gauge invariance, 154 Measurement of physical quantities, 51
Landau, 154 Momentum transfer, 257
radiation, 286 Muonic atoms, 144
symmetric, 154 Muonium, 150
transversal, 286
Gyromagnetic relation, 155 N
Neumann function, 258, 306
H Neutron, 8
Hamiltonian Newton, Isaac, 1

Newton-Raphson method, 215, 220
Norm, 57
Numerical quadrature, 214

Zeeman Hamiltonian, 254
Hamiltonian (see Operator)

Hamilton-Jacobi equations, 77 . s
Harmonic oscillator, 80 Simpson’s method, 214

Heaviside function, 303 ~ trapeZ(‘ndal‘ r'nethf) Ei,_214
Heisenberg, 4 Numerov algorithm, 217
uncertainty relation, 4
Heisenberg picture, 58
Helium atom, 204
Hermite polynomials, 80, 303
Hertz, Heinrich, 1
Hydrogen atom, 7
energy levels of, 143 ]
subshell, 143 conjugate, 13

Hydrogen-like atoms, 144 evolution, 58
yerogee atoms function of, 52

Hamiltonian, 23, 25

O
Observable, 50
commuting observables, 52
Operator
adjoint of, 52
anti-Hermitian, 13

. ' Hermitian, 13, 18, 99
Identical particles, 228 identity, 53
Inner product, 13 Laplaci;n 71
Ionization energy, 142 linear, 12
lowering, 81, 99
K lowering spin, 123
ket, 50 matrix elements of, 55
trzal kets, 199 mean value of an, 23
Kronecker function, 15 momentum, 23
normal, 13, 18
L parity, 69, 151
Laguerre polynomials, 142, 305 raising, 81, 99
Landau raising spin, 123
gauge, 154 representations of, 54
levels, 164 root-mean-square deviation of an, 23

Lande factor, 254 rotation, 102



Operator (Cont.):
spatial, 23
spin, 122
unitary, 13, 19
vector, 56
Optical theorem, 259

P
Parseval’s theorem, 301
Partial wave expansions, 258
Particle, free, 22
Pauli exclusion principle, 231
Pauli matrices, 122, 124, 136
Pauli’s exclusion principle, 229
Permutation, 228
Perturbation of a degenerate state, 177
Perturbation
adiabatic, 191
of a degenerate state, 177
sudden, 191
time-dependent, 177, 286
time-independent, 175
Perturbation theory, time-independent, 173
Phase shift, 258
Photoelectric effect, |
Phoion, 1, 281
Planck, Max, 1
Planck’s constant, 1, 2
Planck-Einstein relations, 2
Positronium, 144
Postulates, of quantum mechanics, 51
Potential
attraction, 205
barrier, 24, 201
central, 140, 297
effective, 141
hard sphere, 264
harmonic oscillator, 80
isotropic harmonic, 87
periodic, 43
potential step, 24
potential well, 30
scalar, 154
scattering, 261
spherical repelling potential, 272
stopping, |
time-independent, 257
vector, 154
Yukawa, 260
Poynting vector, 290
Probability current, 155
Probability density, 155
Projector, 50

INDEX

Q

Quantization rules, 56
Quantum angular momentum, 98
Quantum number, of spin, 122

R

Radial equation, 140

Radiation
black body, 297
external radiation field, 288
monochromatic radiation field, 290
nonresonant radiation field, 298
semiclassical treatment of, 286

Radiation pressure, 9

Reduced mass, 141

Region, classically allowed, 200

Representation, 53

lp». 55

I, 55

algebraic, 100

change of, 54

coupled, 237

differential, 100

uncoupled, 237
Resonance scattering, 267
Ritz theorem, 199
Rodrigue’s formula, 303, 303
Root-mean-deviation, 52
Rotation

generator of, 102

in spin space, 123
Rotator, 196
Runge-Kutta method, 216
Rutherford, cross section, 262
Rutherford formula, 260

U

cattering
angle, 5

Bragg-Von Laue scattering condition, 262

differential cross section, 256
elastic, 285

high-energy, 270

of identical particles, 259
low-energy, 270

p-wave resonance scattering, 268
resonance, 38, 267

scattering amplitude, 257
scattering matrix, 283
scattering potential, 256
scattering process, 256
stationary scattering states, 257
total cross section, 256
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Scattering matrix 283
Schrodinger
equation, 3, 21, 80
picture, 58
stationary Schrodinger equation, 22
Screening charge, 204
Secant method, 215
Selection rule, 294
Singlet, 242, 275
Slater’s determinant, 229, 231
Space, dual, 50
Spectrum, continuous, 78
Spherical harmonics, 100, 304
addition theorem, 305
Spherical symmetry potential, 101
Spin, 122
antisymmetric spin state, 275
commutation relations, 122
eigenfunction, 122
eigenvalues, 122
nuclear spin, 275
polarization, 168
spin space, 122
standard basis, 122
symmetric spin state, 275
Spin 1/2, 122
Spin operator, 122
Spinless particles, 141
Spinor, 123
Spin-orbit coupling, 251
Standard basis, 122
Standard basis, of vector space, 100
Stark effect, 187
State, vacuum, 82
State space, 50
continuous, 53
discrete, 53
Stationary, 22
states, 3, 57
Step function, 303
Stern-Gerlach experiment, 122
Stopping potential, 1
Symmetric gauge, 154
Symmetrization, 56

Symmetry
cylindrical, 226
radial, 226

T

Tensor product, 236

Time evolution, 56
for a conservative system, 57
of the mean value, 57

INDEX

Total probability, 21
Transformation, 154
Transition
electric-dipole, 287
electric-quadrupole, 287
forbidden, 287
magnetic-dipole, 287
strictly forbidden, 290
Transition rate, 287
Translation invariance, 261
Transposition, 228
Triplet, 242, 275
Tunnel effect, 40
Turning points, 200

U
Uncertainty, of energy, 58
Uncertainty relation, 4, 58
Units
Gaussian system of, 155
MKS units, 155

Vv
VYacuum state, 82
Variational method, 199
Variational parameter, 204
Vector space, 11
dimension, 12
inner product, 13
standard basis, 100
state space, 50
Velocity
group, 4
phase, 4

w

Wave
outgoing, 280
plane, 291

Wave function, 21
antisymmetric, 228
normalized, 21
probability current of, 24
probability density of, 23

Wave number, 4

Wave vector, 3

Wavelength, 3

Wave-packet, 3, 22

Waves, plane, 22

Z
Zeeman effect, 170
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